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I. INTRODUCTION

A Free Electron Laser (FEL) device1
the interaction of a relativistic electron beam and an external electro-
magnetic wave or pump. The intensity of the emission increases with the

pump amplitude and it is advantageous to use an external ripple magnetic

field ("wiggler') as the external pump.

pitch and amplitude (CWFEL) has a large small signal (ss) gain, but a low
high signal (hs) gain and efficiency (n < 0.1%) for optical wavelengths.
By adiabatically tapering the wiggler field amplitude and/or wavelength
(tapered wiggler FEL, TWFEL), the predicted hs gain and efficiency can be

2,5

dramatically enhanced. ’ A considerable amount of theoretical work has
been carried out to describe the TWFEL characteristics. However, until
recently most of the studies utilized simplified models that assumed one

dimensional, infinite length electron beams, single mode excitation, single ’

pass and amplifier (hs) operation.

quite useful to understand the TWFEL mechanisms, they Limit the range of
applicablity of the theories, mainly to predict the characteristics of
practical FEL devices. In addition, the validity of most of the assumptions

have to be reevaluated to study FEL oscillators.

It was the purpose of the FEL theoretical study reported here to
investigate the influence of relaxing some of these simplifying assumptions
on the TWFEL characteristics. In particular, the investigations were

focussed on the following problems:

inhomogeneity, electron and photon beam radial profiles; 2) smatl signal

behavior as a function of taper; 3

TWFEL,; reduction of the number of photon passes to design a practical [

Although these simplifications are

()

small signal gain enhancement for

1

generates stimulated radiation by

The FEL with a wiggler of constant

2,3,4

transverse effects; wiggler field




oscillator; 4) finite electron beam pulse effects and parasitic instability

growth and saturation. The results of these investigations are described in
detail in Sections II through V, respectively, of this report. Each sec-

tion is self-contained, describing the problem, the objective of the

research, the approach taken and the results obtained in detail. Section V
was performed by UCLA under subcontract to TRW. In what follows, we

briefly summarize the contents of each section.

In Section II, the transverse effects are described. For an optical
FEL, the electron beam is of the order of a few millimeters in the trans-
verse direction. The electron beam radius is chosen so that the beam is
in equilibrium with the high amplitude wiggler field. This dimension is
quite different than that of a propagating electromagnetic wave. Due to
the betratron oscillations caused by the wiggler field, the electrons
sample different amplitudes of wiggler and radiation field. Since the
TWFEL efficiency and gain strongly depend on the amplitude of the wiggler
field and the power density of the radiation, these effects can play an
important role in the final gain value, its spectrum and its radial depen-
dence. In this report, Epe influence of the wiggler field inhomogeneity
on the electron beam dynamics and hence on the FEL characteristics is
investigated in detail and compared with the effective energy spread
approximation.6 An analytical formula was calculated for the particle
orbits in the transverse direction that includes the nonlinear wiggler
tapering and the untrapping of particles at the edges of the bucket in the
interaction region. This formula will permit the development of a cost-
effective 3-D oscillator code. In the present investigation it was
utilized to predict the behavior of a TWFEL that utilizes a finite emit-
tance electron beam, as a function of input power and to study the effect
on the TWFEL characteristics, (gain, gain spectrum and efficiency) of
Caussian versus square profiles for both electrons and photons. These
initial studies provide the building blocks for the possible formulation
of numerically cost-effective 3-D analyses valid for small signal as well
as high signal gain.

The effects of the wiggler inhomogeneities were found to be well rep-
resented (withing 10-15%) by an effective energy spread as long as this

effective energy spread is smaller than the ponderomotive force bucket




height. Thus, it is a bad representation for small signal gain calcula-
tions, even for very small emittance electron beams resulting in a problem
of importance for oscillator start-up. For amplifier operation, the
analysis shows that the combination of the wiggler inhomogeneity and the
initial electron velocity cancels the effect of the betatron oscillations
in the phase equation for the electrons and only the effect of their
initial transverse coordinates remains. That is, once the initial

increase in energy spread due to electrons starting at different positions,
with different amplitude of the wiggler field, is taken into account no
additional untrapping is introduced by the beta;ron oscillations.

The effect in the deceleration efficiency, and hence in gain intro-
duced by the fact that, due to their betatron oscillations, the electrons
sample different values of radiation power density, is found to depend on
the ratio of the total equilibrium electron beam radius (Re) to the optical
beam radius at the waist (Rpw)' The maximum effect, however, that occurs
for Re/Rp‘z 0.6 corresponds to an increase in gain when betatron oscilla-
tions are included of less than 15%. A dramatic decrease in gain and effi-
ciency is found as the ratio Re/Rpu increases from zero. In particular,
the gain decreases from G0 at Re =0, to 60/1.6 at Re = 0.7 Rpu’ to G°/4

for R = R .
e oY)

These results will be submitted for publication as a technical note
and have been presented at the IEEE International Plasma Conference
(Santa Fe, May 1981) and at the FEL Workshop in ldaho, June 1981.

In Section II1I, the small signal gain studies are presented. The
results from this investigation were submitted for publication to Physics
Review A and has been accepted subject to small revisions. For a TWFEL,
the gain is enhanced over that of a CWFEL only at a given optimum ampli-
fier operation, input radiation power. For other powers, the gain
decreases and this unusual behavior becomes of concern for oscillator
operation. Further, the gain spectrum jitself varies as a function of
radiation power and therefore problems like frequency hopping or multi-
mode operation that can either delay or completely impossibilitate the
arriving of the oscillator saturation state may happen. In this report,
a 1-D analytical and numerical investigation of the TWFEL small signal

gain is presented. An analytical formula for the gain was derived that

3




is valid for any "type" of wiggler tapering, including multicomponent
wigglers (Section IV). A parametric study of the small signal gain spec-

trum for different wiggler tapers was carried out in detail.

The small signal gain for a TWFEL was found (as expected) to have the
same éeneral characteristics as for the CWFEL. The unusual result, how-
ever, is that the spectrum shifts and decreases in amplitude as a function
of increasing wiggler taper. Thus, it can be either negative or positive
for vy = = The maximum positive small signal gain in general occurs for
Y S Y. For increasing input power, the value of y (or output freguency)
that correspondends to maximum gain for a given taper varies. At the
"optimum' input power for amplifier operation (that at which the gain is
maximum for a given taper), the maximum gain occurs for y = Y. For input
powers higher than this (where saturation occurs for oscillator operation),

the optimum energy is y > Y-

This variation of the gain curve with input power becomes crucial for
an oscillator, since it will determine if the oscillator can be started
at either low input powers for an electron beam with vy _ Y. or if large
input powers are necessary, making the oscillator impractical. Further,
if the oscillator is started from noise, it will start at a frequency that
is shifted from the optimum one at saturation. This will result in very
long times to reach equilibrium if it can be reached at all, and an increase

in the output frequency bandwidth,

The results from the small signal gain study motivated the development
of a new FEL configuration that could have high small signal and large sig-
nal gain at the same radiation frequency. This configuration is described
in Section IV. The new FEL scheme is a combination of several wiggler com-
ponents: multicomponent wiggler FEL (MCWFEL). The scheme is similar in
certain aspects to the optical klystron for CWFEL that consists of a "pre-
buncher' and a ''radiator' section separated by a drift section. The main
difference with a MCWFEL is that the unusual behavior of the tapered wig-
gler gain curve requires a different arrangement of the components and more
than one radiator. In this manner, each component operates at its optimum
input power and is transparent at others. The components are in general a
couple of constant wigglers, a drift space and a tapered wiggler of appro-

priate lengths and ordered in an appropriate manner. Encouraging
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preliminary results were obtained for a 10.6 um device of characteristics
similar to those of the TRW experiment and alsc for 1 um. The results for
10 um are presented in this report. The investigations of gain and effi-
ciency enhancement by a MCWFEL were performed with a 1-D code that assumed
a Gaussian optical beam propagation for both input and excited wave.
Initial studies were also performed of the characteristics of the dif-

ferent wiggler components and its influence in the small gain.

The better MCW configurations were found to be composed of a small
prebuncher section, a drift section, followed by a constant wiggler or
very small taper section for operation at small signal followed by a small
drift section for phase adjustment and followed by a tapered section for
operation at high signal. A number of different configurations and their
main characteristics are also presented in Section IV. The results from
these investigations will be submitted to Physics Review A for publication
and have been presented at the IEEE International Conference on Plasma

Physics (Santa Fe, May 1981) and the October APS Meeting of the Division
of Plasma Physics, New York, 1981.

The investigations carried out by UCLA under subcontract from TRW
for the AFOSR are presented in Section V of this report. The excited
radiation pulse, although initially of the same length than the electron
beam, changes shape as a function of time due to the difference in
velocity between both pulses. This change in shape due to slippage can
untrap electrons reducing the gain. The effect, that can be small for
an amplifier, becomes quite large in an oscillator. In order to study
these effects as well as those due to the possible growth of parasitic
(trapped particles) instabilities, a 1-D finite pulse code was developed.
The code was tested also for CWFEL. A unique feature of the code, in
addition to the possibility of variable tapering, is the self-consistent
description of the pulse density and of D.C. space charge effects. The
épaée charge field is due to the lLarge density of the microbunch electron
pulse and there was initially a concern that it could cause untrapping
due to an increase in the effective energy spread. To date, slippage
and space charge effects as well as the influence of different electron
and optical beam profiles have been analyzed with this code for amplifiers
of the characteristics of the TRW 10.6 um experiments and for higher




ment process of

(1.3 nsec) than
(averaged) gain
the gain at the
of the electron
gains, however,

the electron at

10 with respect

TRW experiment.

gain ones. A multimode description that will permit to study harmonic
growth and sideband instability in detail has been included in the codr

recently. In addition, the nonlinear mechanisms which Llimit the enhance-

the parasitic instabilities were observed with the use of

an infinite electron beam code and the linear growth of the instabilities
was analytically calculated with a kinetic treatment. Some of the results
from these investigations were published in a Physical Review Letters

paper, a copy of which is attached to this section.

For a TWFEL amplifier, where the gain is moderate, it was found that
the "slippage'" and "edge' effect as simulated by the 1-D finite electron
and optical beam pulse TWFEL code do not play a very important role. The
electron dynamics is dominated by the input laser pulse that is modeled

after the TRW experiment. Thus, the input optical pulse is much longer

the electron beam pulse (30-40 psez). Still, the overall f
of the system was found to be a factor of two smaller than

center of the pulse due to the Gaussian (in lLength) shape

pulse and hence of the excited optical pulse. For larger

it was found that even for an amplifier the untrapping of

the edge plays an important role. For example, for a

total gain G = 100 pe}cent, the overatl gain is decreased by a factor of

to what is predicted by the periodic code. The space

; charge effects were found to be negligible in situations similar to the

This effect, however, can play a role for some of the

planned 1 um experiments if the bunched electron beam has to drift more

than 50 meters between the source and the interaction region. In addition,
the influence of both space charge and slippage for oscillators where small
effects are enhanced by the large number of bounces of the optical beam is

still in progress.
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II. STUDY OF THE INFLUENCE OF TRANSVERSE EFFECTS ON THE
CHARACTERISTICS OF A TAPERED WIGGLER FREE ELECTRON LASER

In the Free Electron Laser interaction, the amplitude of the wiggler
magnetic field, the radiation field and the electron beam current density
play a crucial role. Due to the finite geometry Q“cﬁé'system, all of '
these parameters vary not only along the directién of propagation of the
electron beam but also perpendicular (transverse) to it. Hence, in order
to obtain a detailed description of the FEL characteristics it would be
necessary to develop a three or at Leagt two dimensional analysis of the
FEL system. Because of the complexity of the problem, these analysis are

in general numerical. In particular, what is required is a two or three

dimensional numerical simulation that self-consistently solves the equations
of motion of the particles and the Maxwell Equations for the fields. Unfor-
tunately, this type of sophisticated numerical study is extremely expensive
and time consuming even for the fast computers of today, and therefore only
very few and isolated results for a few sets of parameters could be

obtained.

Until recently, in order to obtain parametric studies of the charac-
teristics of a FEL system, the transverse effects were neglected and a sim-
plified, and fast one-dimensional analysis and/or numerical simulation was

performed. After these initial investigations, a number of formulations1’2

were developed to include the influence of transverse effects in the FEL
characteristics. In these formulations, the effect of the transverse non-
uniformity of the magnetic field and the particles transverse motion are
assumed neglegible. In addition the system is treated as a low gain ampli-

fier, that is the input signal is assumed much Larger than the excited one

0
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and in most cases is taken to be a plane wave. These simplifications are

necessary in order to make the problem tractable computer-wise. Thus, only

the three dimensional behavior of the excited wave needs to be calculated.

The neglected transverse contributions, however, can play an important
role for a practical FEL osciltator. For example, the particles execute
betatron oscillations and sample different wiggler and radiation fields as
they travel along their trajectories. Although this effect has been
accounted for up to now as an 'effective' energy spread, it is not clear
that that is the case for some practical experimental parameters.3 Further,
a practical FEL oscillator should start up from noise or with a very small
signal and therefore the "amplifier'" assumption will no lLonger hold.
Finally, the diffraction of the input Gaussian beam does play an important

role in the FEL characteristics for sufficiently long interaction lengths.

In order to aralyze the importance of the transverse effects in their {
totality and to formulate a method that would permit its inclusion in a
numerical code in an effective manner, we initiated a study, the first
results of which are reported in this section. An analytical formula was
calculated for the particle orbits in the transverse direction that
includes a non-linear wiggler tapering and the untrapping of particles at
the edges of the ponderomotive potential well (bucket) in the interaction
region. This formula permits the development of a cost effective numeri-
cal simulation that includes the transverse motion of the particles as well
as the details of an input Gaussian beam. The code, however, neglects the
effect of the interaction on the diffraction of the excited wave. These
effects however would be included with a new formulation that we are devlop-
ing at the present time. The code was utilized for parameters typical of
the TRW experiment and for a parametric study that shows the change in the
FEL characteristics with electron beam emittance and the ratio of the

electron beam radius to photon beam radius.

In general, in a realizable wiggler, the transverse wiggler field is
sinusoidal on its axis. This behavior has been checked, for example, by
measurir - the magnetic field on the wiggler axis of the TRW 10.6 um experi-
ment setup.“ In this case, it was found that the contribution of higher
harmonics in less than 0.1 percent. The fact that the magnetic field is

divergenceless shows that the field has to vary as well in the transverse
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direction with a similar variation constant. Due tco this transverse
nonuniformity in the magnetic field, the electrons away from the wiggler
axis tend to bend toward the axis. Overall, the electron beam exibits a
periodic focusing effect which is usually understood as betatron

oscillations.

The negligence of transverse contributions is justifiable only when
the electrons are very close to the wiggler axis such that they do not
experience transverse variation of both fields. Unfortunately, this is not
the case. With a finite emittance, the electron beam diverges in the free
space. The smaller the beam waist, the greater the divergence of the
electron beam. In order to avoid such problem, the beam has a minimum
waist at the wiggler entrance such that the divergence can be balanced by
the wiggler focusing. It turns out that this radius is comparable to the
characteristic distance of the transverse variation in the wiggler field
and radiation field. Therefore, the transverse effect can not be neglected

completely without careful justification.

For a plane=-polarized (in the x direction) wiggler, the magnetic field
can be found easily from V-Ay(x, z) = 0 and the assumption that the field

is translation invariant in the y direction.

A (x, z) = A_ cosh k x cosk z o))
Yy o W W

where Ao is the vector field amplitude and k“ = 21r/kw is the wave number of
the wiggler field. The vector field in equation 1 gives the transverse and

longitudinal magnetic field as

B (x, 2) =B_ cosh k x sink 2
X o] W W

2)

Bz(x, z)

1

B sinh k x cosk z
[o] W W

It can be seen that the longitudinal and transverse field variations are
not independent of each other. They have the same characteristic constant,
kw’ however, the transverse variation is in hyperbolic functions. On the

wiggler axis, Bx reduces to a sinusoidal function of 2z and BZ vanishes.

10




The field in equation 2 represents correctly the wiggler field near the

axis for any wiggler design. For the field far from the axis, it is
structure—dependent and has to be determined by boundary conditions. How-
ever, the far field is of Little use because the field in equation 2 covers

well the region of our concern.

In a magnetic field (equation 2), the Lorentz equation describing the

electron trajectory is reduced to

dzx as k
adx _. sinh 2k x (1 + cos 2k _2z)
2 2 W "
dz 4y
2
2 a
d (A;) = *_¥ 44 cosh 2k x) sin 2k 2 3
2 W "
dz 4y
{
aw = eB
mc k
W

where a, is a dimensionless wiggler field amplitude and Az is the position
deviation of the electron from a freely propagating beam. In equation 3,

we have replaced the time variable with the position variable z.

The term, cos 2kuz, in equation 3 is a fast oscillating contribution
to the trajectory. However, the variation in x is much slower and hardly
affected by this fast osciallation. This argument is supported by numeri-
cal simulation which shows that the fast oscillating term can be completely
neglected without introducing any significant difference in the result.
Moreover, for typical experimental parameters4 x is about 1 mm which gives
Zka = 0,3. Therefore, sinh 2kwx can be substituted by 2kux within an error

of 2 percent. The resulting equation is quite simple

d2 a

X
dz2

X 4)

11
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Equation 4 is identical to a simple pendulum equation with samll

amplitude. ALl electrons have the same oscillation period

A= 5)

An exact calculation of equation 3 gives a shorter period for the outer
electrons. However, the difference from equation 5 is minimum. The

electron trajectory is then found to be described best by the equation

x(2) 3 cos kz sin kz x(o)
u(2) - -sinkz coskz u(o) (6

= v _(2)/(ked
X

c
|

x
1}

2n/A

where u is a measure of the transverse velocity in units of length, and k
is the wave number of the betatron oscillation. Equation 6 indicates that
the propagation of electrons in a constant wiggler is only a rigid rotation
of its distribution in the phase space x - u. The rotation angle, kz, is
directly proportional to the propagation distance. The invariant quantity
for individual electrons is (x2 + u2). Obviously, the electron distribu~
tion is an invariant if the initial distribution is isotropic in the phase

space. For a Gaussian distribution, the density can be written as

~n
n

(7

]
xlx

+
c|c

N =e

o N
[ 30 )]

where Xe and u, are the beam radius in real and velocity space. The con-
dition Xg = Ue defines the equilibrium state for the electron beam where

the beam radius remains constant. At this point, the beam divergence due

12
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to finite emittance is exactly balanced by the beam focusing due to the

transverse field gradient and the equilibrium radius is obtained as
xg = ¢ (8)

where € is the beam emittance.

For Xq £ Ugs the beam divergence and focusing do not exactly balance
each other. 1In this case, the beam profile oscillates at the period of
the betatron oscillation with the maximum (minimum) radius egual to the

larger (smaller) value of Xq and ue.

For a tapered wiggler, the situation is complicated by the z - depen-
dence of bw<2) = au(Z)ku(Z)' However, to a very good approximation, we
found that the trajectory of an electron in a tapered wiggler can still be
described by the equation

X(2) cosf sind X(o)
V(z) = -sin® coso V(o) £
x(z) = [g)]1V2 x ()
(2)
_ -172 | Yx g°(z) .
V(z) = [g(2)] [-—:r— + 29(2) x(2)} /k 1o
g(z) = b (2)/b (o)
W w

z
] =k f g(z) dz
o

Therefore, the beam propagation can also be described by a rigid rotation
of the electron distribution in a new phase space X-V where the coordinates
are defined in equation 10, The real space coordinate is scaled down or

up according to the square root of the taper function g(z). Except for the
scaling factor [g(z)]-1/2, the new velocity cooridinate, which is in units

of length, has a small mixing part coming from the space coordinate. For

13




practical applications, this mixing in the velocity coordinate is

negligible. The najor effect of the tapering on the trajectory is in the

scaling factor. Since, X2 + V2 is an invariant quantity (cf Equation 9),

we find that the beam radius increases with the decreasing bu(z).

Due to the betatron oscillation, the electrons experience different
field amplitudes as they propagate down the wiggler. However, the trans-
verse variation of a, within the electron beam is less than S percent. The
energy equation describing the electron energy loss rate is hardly affected
by the oscillation. The case is different when we consider the phase

equation

11>

which has been averaged over the magnetic period. Vx in the square bracket
survives the averaging because its variation distance is much longer than

Au. Using the expression in aw(x, 2), we have

dy _ . - EEL - aw(z) . bw(O) bw(Z)
dz "] 2 2 2

(12>

2
Ve _
i

a(2)¢%k°

. g(z) xz(z) +

The guantity in the square bracket is an invariant and depends on the
initial conditions of individual electrons. Therefore, the betatron oscil-
lation does not appear explicitly in the phase equation. Equation 12
points out that the invariant quantity represents an equivalent energy
distribution and could be replaced in principle with an eguivalent "effec-
tive energy spread".S This approach would present an advantage for the
numerical simulation. Since we could transform two degrees of freedom,

x and Vs in the simulation code into one, the energy spread, which can be




further merged with the real energy spread, if any. For an electron beam

in equilibrium state, the effective energy spread is given as

A X
<_Y_ = (= 13)
Y [ eff W

where Xq is the equilibrium radius. This result, however, is not valid

for any electron beam emittances. If the effective energy spread is of the
order of the height of the ponderomotive potential well, the untrapping of
electrons plays an important role in the tapered wiggler FEL at optimum

power and this effect has to be included in the description.

In order to study in detail the influence of the various transverse
effects and to compare with analytical predictions and simplifications, a
numerical code was developed that follows the electron equations of motion 1
in 3-D and assumes an input proton beam that can diffract as a Gaussian beam
and can have any initial profile. With this code, numerical simulations

were performed for parameters characteristic of the TRW 10.6 um experiment.

The gain of the system was evaluated and compared for three different

profile combinations: [

1. Square profile electron beam, sguare profile photon beam |

2. Square profile electron beam, Gaussian profile photon beam
3. Gaussian profile electron beam, Gaussian profile photon beam

Case 1 has been applied up to now most extensively in the scaling and ana-
lytical studies for its simplicity.6 In Figure 1, we show the gain depend-
ing on electron beam emittance. The photon beam waist radius Rp is set at
2mm which corresponds to 1cm-mrad emittance for the electron beam. With-
out the betatron oscillation, it is easy to understand that the gain is a
constant when Re < Rp and decreases quadratically when Re > Rp. With the

betatron oscillation, the gain curve becomes smoother. However, the gain

drops at Re < Rp due to the effective energy spread and becomes higher at
Re > Rp because the outer electrons still have the chance of passing the
optical beam region.

15
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For cases 2 and 3, the gain curves are similar. The peak gain at zero
emittance is about 50 percent higher than the gain for a square photon beam.
This is reasonable because the peak intensity of a Gaussian beam is about
50 percent higher than a square beam intensity with the same total power.
The gain drops fast as the emittance increases. The gain is only one-
fourth of the peak value at Re = Rp and is close to the value in case 1
only around Re = 0.5 Rp. Therefore, gross overestimates of the gain are
obtained when it is based on case 1. Further, Figure 1 shows that for
optimum operation Re should be < 0.5 Rp! As can be seen from the inserts
of Figure 1 the square electron beam has more electrons near the center for
Re < Rp. Once Re is larger that Rp, the square electron beam loses
electrons faster than the Gaussian electron beam. This is the reason why
the gain for a Gaussian electron beam is higher (lower) than the gain for

a square electron beam for Re >R (Re < Rp).

In Figure 2, we show the gain for square electron beam and Gaussian
photon beam and compare it to the gain curve if we had used an effective
energy spread in Equation 13 for a given emittance. The result proves the
validity of using the effective enerqgy spread to replace the effect of
beam emittance for small electron beam emittance. However, for large beam
emittances this is not the case. The emittance is considered "large' if
the "effective energy spread" is larger than the height of the pondero-
motive potential well. Even for very small emittance beams this will be
the case at small signals. The finite electron emittance small signal
gain is analyzed in detail at the end of this section. The case including
the photon beam diffraction is also shown in Figure 2 for comparison. These
results show that the photon beam profile and ratio of Re/Rp and effective
energy spread (emittance)/bucket height play a mora important role than

diffraction in determining the FEL gain.

From the above series of results we conclude that in a number of cases
the effective energy spread and square photon beam profile can not be
utilized to simplify the code. However, instead of following every electron
down to the wiggler, the numerical simulation of a free electron laser can
be much simplified by assuming that every electron follows the analytical
trajectory obtained in equation 6, for a tapered wiggler. To apply directly

this trajectory equation in the code, a preliminary knowledge of g(2)

17
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and optical beam profiles have been analyzed with this code for amplifiers

of the characteristics of the TRW 10.6 pym experiments and for higher

becomes necessary. In the low gain Limit where a is assumed to be
constant, it is well knows that aw(z) or Au(z) is linearly decreasing. In
the high gain regime, the growth of a has to be considered in the self

consistent equations

_=-L<ﬂ>l 14)

The ensemble average < >,'¢ can be represented by the fraction of
trapped particles assuming that the untrapped particles have no contribu-

tion at all
“5

The simplest approximation is that the number of trapped particles does
not change, i.e. Nt(Z) = constant. However, this does not lead to an
analytical solution of the equations. In order to obtain an exact
solution for the self-consistent equations, we allow detrapping of

particles and assume

Yr(Z)
Nt(Z) = Nt(O) . ;—r—(;) (16)
Using Equation (16), we solve self-consistently aw(z) as
2kwassinw
a (2) = a (0) cos Kz = ——— sin Kz A7
w W K
wpts1nwr
K =
VpWsty

In Figure 3 we compare the behavior of au(z) for the linear variation,
actual simulation (wr = 35%) and the nonlinear variation given by
Equation (17). It shows that the prediction of Yr(Z) and gain is much
better for the nonlinear aw(z).
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0.98

VR=35°

o= o= == LINEAR
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SIMULATION 0980 0.894 4983 48.45 1.31
LINEAR 0980 0910 4983 48.70 1.14
NONLINEAR 0980 0893 4983 4844 1.38

Figure 3. a, Variation, Deceleration Efficiency and Gain (AN=.const).
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For variable magnitude period, the assumption for the z-dependence of

Nt(Z) can be more justifiable. Since the height of trapping potential is

ZawasYr
Bucket height =-———;——— r (wr) ’ 18)

it is reasonable to assume that the number of trapped particle is

proportional to the bucket height:

Yr(Z) as(z)

yr(o)vf5s(o)

Nt(Z) = Nt(O) . a9

Using (19), we obtain a self-consistent tapering in the wiggler pitches

2a a k S'inwr >
A (2) = A o) J 4 - S WM 2 |1402+ 173000 ] (20)

W W 2
u

2

) - wptZk u

L 22

Yr ws

In Figure 4, we compare A“(z) for the linear variation, actual

simulation (¢r = 35%) and the nonlinear variation given in Eguation (20).

Since Equations (17) and (14) are analytical and integrable and
describe much better the real tapering of the wiggler, they can be used

in Equations (9) and (10) for the electron trajectories.

Since an electron's initial conditions, x{(o) and Vx(O)’ determine its
equivalent energy, y, in the phase equation, it is important to check the
dependence of the gain spectrum on the electron transverse distribution.
In particular, we are interested in the small-signal gain because it plays
an important role in the oscillator start up. This spectrum is well known
analytically for a zero emittance electron beam. Based on the phase

Equation (12) and the energy equation. We can obtain the small-signal

21
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Figure 4. AH Variation, Deceleration Efficiency and Gain (aw = const).
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energy loss of each electron from a general 1-D smali-signal theory (7)
(see section III). The energy lLoss is proportional to the derivative of

the spontaneous spectrum generated by that particular electron

3 (2
5+ [a] @n

>4
™
"

where Q@ is the far field amplitude, |Q|2 is the spontaneous emission

spectrum and h is the initial detuning constant.

In order to obtain the total energy loss of electrons, we integrate
AE over the initial electron distribution. For the case of a helical

wiggler the total energy loss is

o0

S belr) f(r) r d r (22)

o]

Ag

S f(r) rdr =1

[o)

where f(r) is the normalized electron distribution. If the wiggler is
sinusoidal, elliptical coordinates must be used to describe the electron
beam distribution. Assuming that all the energy extracted from the
electron is converted to radiation, the radiation gain will have the same

energy spectrum as the energy loss in Equation (22).

As a demonstration of this calculation we assume that the electron

“~

beam has a uniform distribution in the phase space up to the circle X2 +
V2 = RZ. The integration (22) results in

R
=2 9 2
beg = -2 I ¢ 3R @[ r dr 23

o
23




where r is the radial distance from the origin in phase space. Since

K 2
h=k, - 3 ‘1+a§+bwrZI (24)
2 | |
we obtain
€ YZ
bep - 22 [ lal® e
Rk b
S
€oY 2 2
= 9 - 25
R% b ° [’ y=o llY‘R]
S W

where R is the beam equilibrium radius. Therefore, the gain spectrum is

a Raman-type which is the difference of two spontaneous spectra with a
relative shift equivalent to the beam radius. This result is demonstrated
by a numerical simulation of a 10.6 um experiment with zero tapering. The
electron beam radius is 2mm which results in an energy shift of about 1.75
percent. The simulation is done at 0.01 Mev input radiation power which
is within the small-signal regime. The gain spectrum (Figure 5) clearly
indicates the theoretical prediction in (25). As the electron beam radius
approaches to zero, the dip and peak of the gain curve will move close to

each other. At the zero Limit, it reduces to the well known gain spectrum.

For a plane-polarized wiggler, we have a similar result. The gain
spectra for different emittance are shown in Figure 6. It can be seen
that the gain curves are antisymmetric. The peak gain drops and shifts to
the right as the emittance increases. The negative gain almost stays

stationary. It shifts from hL = =2.6 to approximately hL = 0.

It is interesting to compare these curves with the corresponding
results for gaussian electron beam (Figure 7). The peak gain is smaller
for the gaussian beam and the gain curves are highly asymmetric. However,
we observe a long tail of positive gain on the side of positive hL. Hence,

the effects of finite emittance plays a Large role at small signals where

the effective energy spread assumption is not valid.
24
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I1I. GENERAL I-D THEORY OF MULTI-COMPONENT WIGGLER FREE ELECTRON
LASERS IN THE SMALL—SIGNAL REGIME

III-1, INTRODUCTION

It is well-known that a properly tapered wiggler can extract more
electron energy than an untapered wiggler to amplify the input signal of
a high frequency free electron laser (FEL).1 The physical principle is
based on keeping the phase velocity of the ponderomotive potential well,
formed by the interaction of the wiggler field with the electrons and the
radiation field, in pace with the electron mean velocity in such a way
that the energy extraction process can be continued down the wiggler,

This is accomplished by either spatially varying the phase velocity of
the potential well (bucket) or by replenishing the lLongitudinal energy
lost by the electron beam to radiation. The phase velocity can be varied
in a controlled manner by adiabatically tapering the wiggler period
whereas the Llongitudinal electron energy can be replenished by either
adiabatically tapering the wiggler amplitude or introducing a d.c.
longitudinal electric field. The electrons that are initially trapped in
the bucket tend to remain trapped if the motion is sufficiently adiabatic.
As the bucket energy or its amplitude decreases, the mean energy of the
trapped electrons is reduced. The extracted electron beam energy provides
the amplification of the input laser signal.

The appropriate taper of the wiggler depends on the rate of change of
the electron beam energy which is in turn strongly related to the radia-
tion field strength. Therefore, a wiggler with a given taper is optimum

only for certain input laser power level. The single-pass gain decreases
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for either higher or lower input power. At low input powers (small
signal), the gain can drop to a much Lower value than at high powers and,
in some cases, can become negative. This could present serious problem

for the start-up of a free-electron laser oscillator.

If the oscillator is started by injecting a low power signal at the
desired wavelength, the system will be practical only if the injected
power is less, at least, than one-tenth of the optimum power. Usually,
this power level is well within the small-signal regime. If the roundtrip
cavity loss, including the output coupling, is larger than the single-pass
gain, the oscillator can never start. The characteristics of the tapered
wiggler FEL at optical frequencies are such that even in cases where the
small-signal gain is higher than the threshold value, the net gain is
usually too small for the radiation field to reach its saturation within
a finite number of passes (typically, for a high current accelerator,
there are only several hundred micropulses in an electron macropulse). t
Recently, it has been suggested that the small-signal gain, as well as the
large-signal gain could be enhanced by utilizing multicomponent dev*icesz—4

or optical kl.ystrons.s-6 (next section IV)

If the oscillator is started from the noise level, it will oscillate
at the wavelength where the gain is maximum. The maximum energy extraction

occurs when there is maximum overlap in the interaction region between the 1

electron mean velocity and the bucket phase velocity (resonant). However
at small signals, the electron energy loss is slower than the rate for
which the tapered wiggler is designed. Thus, to obtain higher gain at
small signal Levels the starting electron energy would have to be lower
than the resonant energy. For fixed electron energy, this means that the
wavelength at which the maximum gain occurs varies with the input power.
This effect can produce a shift of the operating radiation wavelength as
the radiation builds up inside the cavity. In addition, it also suggests
that injected oscillators should be started with a signal at the maximum

gain wavelength instead of the final, desired wavelength. Although this

might solve the start up problem, it can delay the time to reach steady
state beyond acceptable Limits. The adiabatic condition for the shift and
how it proceeds at the expense of the interaction gain need to be studied

carefully.
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In order to analyze these two aspects of a tapered wiggler FEL
oscillator, we undertook the study of the more fundamental problem that is
reported in this paper: the analysis of the smail-signal gain spectrum
which determines the gain magnitude as well as the operating wavelength.
The result from these studies motivated a full investigation of the novel
multicomponent wiggler scheme.3 The analysis of this scheme is reported in
detail in the next Section IV where the characteristics of the Tapered ;

Wiggler FEL as a function of cavity or input radiation power are discussed

III-2. SPONTANEOUS SPECTRUM

In this subsection, we calculate the classical radiation due to the
periodic electron motion in a tapered wiggler. The wiggler is assumed to

have plane polarization and the vector potential can be written as:
z -
A (2) = A(2) cos(s kw(z)dz) x (1)
o

The calculations can be easily generalized to any field polarization. Far

away from the wiggler, the energy received at the detector, dW, per unit

angle, dQ, per unit frequency interval, dw, is7

i@ S: (1 -n- 8(2)]

221 L. A
a%;he% Snx[an(z)] e © dz| @
Lx“c (e)

where n is the direction of observation, L is the wiggler length §(z) is
the electron velocity at position z in units of the Light velocity in

vacuum, ¢, and w the emission frequency.

The integral in (2) represents the complex field amplitude and
contains all the informations of the electron motion inside the wiggler.
We are especially interested in the forward spontaneous spectrum where
; = ;. In this direction, the complex amplitude becomes

3




z
L 2§ 0 -B.(2)] dz
Q=SB‘(2)e°° z

o

dz (3)

z Y
B, (z) = - iﬁfél cos (So kw(z)dz)

In the integrand in (3), BL(Z) is the electron transverse velocity indica-
ting the radiation strength at position z while {w/c f;[1 - Bz(z)]dz} is
the relative phase delay of the radiation arriving at the detector. If
the longitudinal velocity, Bz’ is a constant, (for example, in a con-
stant helical wiggler), the complex amplitude is the Fourier transform of
the electron transverse motion. If Bz is not a constant, the situation is
more complicated. However, the fast oscillation in Bz can be averaged

over to obtain:

L .
Q= - %; S aw(z)e-'f(z) dz (4)
o
z
where; f(2) = So g(z) dz

kg ai(z)
g(z) kw(z) -— 1 + 5

aw(z) = Eﬁiél p ok =‘%

mc

g(2) is the local detuning function between the electron and the ponderomo-
tive potential. f(2) is the accumulated phase factor. For given au(z) and
ku(z), the spontaneous spectrum can be obtained by calculating the integral

in (4). The detailed result for several wiggler schemes is shown in III-4,
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I1I-3. SMALL-SIGNAL GAIN

The interaction of an electron with the radiation inside the wiggler

can be described by the following one-dimensional equations of motion

dg

dz = - ksasaw(z) sin ¢ (5a) *
k a“(z)

dy s w -

r e kw(z) 3 [l +t— asaw(z) cos w] (5b)

q:-S(kw+ kg ) dz -t

eEk

7]

mc

where E is the radiation field amplitude and y is the phase position of
the electron in the ponderomotive potential well. In Equations (5a) and

(5b), we have averaged over the fast oscillations of the electron motion

at the radiation and wiggler period. The term (asawcosw) in (5b) is small
and usually neglected in the calculation of the gain. However, we find
this term js essential in providing an exact relation between the small-

signal gain and the spontaneous spectrum as it will be shown later.

In the small-signal regime, the dynamic variables £ and ¢ can be

expanded in powers of as

(6)
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where E(n)and w(n) represent the terms proportional to 32' Substituting

(6) into (5), we have the following iterative equations

2
dw(O) .k (2) - ks . aw(z) (73)
dz W z 2530) 2
(M
dg = - . (0) 7
3z ksasaw(z)5|nw (7b)
(1) 2
dw(l) = kSE 1 + aw(z) + ksaSaw(z) COSUJ(O) (7¢)
dz 2€(0)2 2 25{05
(2)
det? (m___ (0 70
= - ksasaw(z) ¥ ‘cosy
with the initial condition 5(0) = YZ, 5(1) and 5(2) can be obtained by

straightforward integrations of (7)

(1) L

£ = - ksas So aw(z)sin [wo + F(zﬂ dz (8a)
k2a2
5(2) = - Ziii S) aw(Z) cos [wo + f(z)]dz $2
3.2 2
k’a L z a (z')
+ ‘Egi S aw(z)cos [wo + f(z)] dz S [I + wzz ] dz
2y o o]
zl
So aw(z”) sin [wo + f(2'")] dz" (5L)

where ¥, is the initial phase of the electron and f(z) has been given in
(4). We are interested in the electron energy in units of the electron

rest mass, y, which is related to she dynamic variable £ as
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~

(") _¢ (9a)
Y = 7;—-
1?2
L 3£<z) ) 5(75 96)
by

Substituting (8) into (9), we obtain the first and second order
corrections to the electron energy. We can then go on to calculate the
ensemble averages (over the initial phase wo) of two quantities: the
phase averaged energy change <Ay> and the phase averaged energy spread
<(Ay)2> that are related to the small-signal gain and the spontaneous

spectrum respectively for small gain systems and monoenergetic beams.

2
<(Ay)z N =-<Y(]) N (1Ca)
b
= =7 S dz, S dzzaw(z')aw(zz)cos [f(zl) - f(zz)]
Y (o) o
(2)
A =
fyz= <y (10b)
2.2 L L
ksas S 2 3
= > dz, dz, 5- 5%}§aw(z])aw(zz)cos [f(z]) - f(zz)]
16y (o] o
Comparing (10b) with (10a), we prove Madey's theorem 8,9
< Ay>=‘i%< (ay) %> “an

It has to be .mphasized that we have proved this theorem for any wiggler
configuration. Further, the wiggler variation does not need to be
symmetric as the assumption given in the original paper.8 Since there is

essentially no restriction on aw(z) and kw(Z)’ the theorem is also
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applicable to the multicomponent wiggler or the optical klystron as long

as au(z) and kw(Z) are slowly varying.

The small-signal gain in the radiation power, § = cEZ/Bn, can be
derived from the extraction efficiency, n, if it is assumed that all the

energy lost by the electron beam goes into electromagnetic energy;

2.2
a
nz-2r._ 55 2 42 (12
Y Yy 9y
2
6= (L) - £(0)_ _ Input e-beam Power - . mE 3 'le (13
- €0 Input Radiation Power 2c? Y

where ]Q|2 was given in (4). From (9), we find that the small-signal gain
is exactly proportional to the slope of the spontaneous spectrum. Note
that if the small term in (5b) would have been neglected, the small-signal

gain would be

2

ul

6 =-—2 3%+3§|Q|2 (14)
2¢ Y Y

Although (2/vy) is much smaller than (3/3y) in the relativistic limit, it

violates the exact relation that follows from Madey's theorem.

The gain expression in (13) is compc.etely general. It is derived for
arbitrary variation in the magnetic amplitude and period including multi-
component devices and optical klystrons. In these devices, the drift
space can be represented by aw(z) = ku(z) = 0. As it will be shown in
the next section, an optical klystron is a particular case of the multi-
component device. Instead of its physical drift distance, we have to
apply the effective drift distance which is due to the use of dispersion

magnets.
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II1I-4. APPLICATIONS

In this subsection the formulas derived in Section III-2 and III-3
for the spontaneous spectrum and small signal gain are applied to
particular devices. We first show that for constant wiggler the standard
result is obtained and afterwards generalize to tapered wiggler and multi-
component wiggler. In order to obtain a simple analytical result the

electron beam is assumed cold (zero energy spread).

A. Constant Wiggler

For a constant wiggler, the complex field amplitude is reduced to

a L
_ W ~ihz
Qc-ﬁs dz
o
2 s {
k a

h=k, - —5 ['* Tw]

ooy

Hence, its spontaneous spectrum is the well known spherical Bessel func-

tion squared

dw ezwzasz
= W_ 52 () (16)
d0dw 7 2 Jo
16n°cy ht
x = _2_

The small-signal gain, obtained as shown in Eq. (13), is

2 .3
6 = wpkwL 2 - 2 coSx-xsinx ¢
1
¢ 2c2Y§7 xj x = hbL a

and it peaks at hL = 2.6, yielding the standard formula

37




2

wzkwLBGw
G = 0.27 -9—2—— U8
¢,max be Y3

B. Linearly Tapered Wiggler

For a tapered wiggler with the variations a“(z) and/or kw(z),
Equation (4) and (13) can be used to calculate the gain and the spontaneous
spectrum numerically. Since the spectrum is the result of interference of
the fields radiated from different parts of the wiggler, the phase factor
f(2) is far more important and’sensitive than the radiation strength fac-
tor, aw(z). for simplicity, we consider the linearly tapered wiggler with

the variation
g(2) = h + az a9

and calculate the spontaneous spectrum to be

222

e w a
e =t - I e(p) - c(@)? + Is(p) - $(q))?

dQdw 16m2cy
a h
P=a= L+ — 20)
\E: Yar
q =~
Var

where h is the initial energy detuning, a indicates the degree of linear

tapering, C and S are Fresnal functions.10 Since
C(~p) = - C(p), S(-p) = -S(p) Q1N

the spectrum is symmetric about p = -q, i.e.

h == al/2 (22
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which means that the wavelength at which the spectrum is centered is
determined by the parameters at the mid wiggler. If we choose to fix the
wiggler parameters at the entrance, as we vary the wiggler taper, it is
expected that the center of the spectrum will shift to lower values of h
(shorter wavelenghts for a fixed electron energy) with increasing tapering
for positive a. The spectrum, for values of aL2 =0, 10, 20, 30, 40, 50
is shown in Figure 1. When the taper increases, we find that the peak
intensity drops while the first sideband is enhanced. In particular, at
aL2 = 30, the magnitude of the fundamental and first sideband are almost
the same and the spectrum shows a plateau extending over a wide range.
For aL2 larger than 30, the center intensity drops even further and the

spectrum extends rather irregularly.

It is useful to relate the parameter a to the taper rate for constant

amplitude or constant period wigglers. For constant amplitude

k xw(o) - AW(L)

W
Q= — - (23)
L A, 00)
and for constant period
a2 k a (0) - a (L)
=Y .M, L 24)
* 2 T a (0]
1 +-%1

The small-signal gain for a linearly tapered wiggler is obtained by
taking the derivative of (20)

2.2 )
wia® k /v 2 2
G = -Eiﬁgii—- {[;oslg— - cos 3%—] [c(p) ~ c(q)]
2¢7y a’a

25)

2 2
+ [su.l;_ - sinl'—‘zi-] [s(p) - s(q)]}
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which is identical to the result obtained by C. Brau.11 The gain spectrum

is antisymmetric about the point p = -g and is shown in Figure 2 as a func-
tion of the wiggler taper and the energy detuning. To simplify the figure,
the negative gains are suppressed, however, they can be figured out easily
from the antisymmetry relation. Figure 2 shows that the main bump in the
spectrum decreases appreciably and disappears completely after aL2 = 30.
The small bumps on the negative side of h vanishes even faster except for

a rising bump within the range -2m < (hL + aL2/2) < 0. This becomes the
major contribution at large tapering. It is interesting to note that the
peak gain shifts toward negative h and decreases in magnitude as the taper
rate increases. Eventually, the first side lobe disappears completely and
it is replaced by the main peak, as the shift of the whole structure con-
tinues, the relative amplitude between the main peak and the remaining
sidebands decreases and can become smaller than 1. Thus, the spectrum
tends to remain rich in structure and with its maximum gain near

h=0 (y = YR). In order to compare with Figure 1, the gain spectrum is

shown explicitly in Figure 3 for the corresponding linear taperings.

In Figure 4, the relative value of the gain is shown in contours of
equigain. The value indicated on each curve is the gain compared to the
maximum gain (0.27) for the constant wiggler (see Eq. 18). Note that, at
Y = Yge the gain can be negative for certain tapering ranges. Obviously,
for the oscillator start-up at the desired wavelength, these regions

should be avoided.

C. Two-Component Wiggler and Optical Klystron

A two-component wiggler device is composed of two wigglers (constant2
or tapered3’4) in series with a free drift space between them (Figure 5a).
For a first component or prebuncher of appropriate length, the electron
bunching usually increases with the drift distance. In order to increase
the drift distance without affecting the device Length, dispersion magnets
are introduced in the drift space. A typical arrangement is shown in
Figure Sb. The free-drift space can be represented by a, = kw = 0. The
phase advance of the electron relative to the radiation in the free drift
space can be calculated from the phase equation. With a drift distance

LD' the phase change is

o1




U
o1~

o€~

(1]

Se-

0e-

Si-

S0

w0 30 20 10 0

———
S ——

—
1

B
et

d
[
i
——™”

LK

Figure 2. Gain Structure as a Function of the Taper
alL? and the Detuning Parameter hL. The
Negative Gains are Suppressed.

42




(
<

n

>
|
)
|

S N N T N
"
<
ik m——-—u—q—é /_\
-30  -25 -20 -15 -10 -5 0 5 o
hL

Figure 3. Gain Spectrum for aL2 =0, 10, 20, 30, 40 and 50. i

43




Figure 4.

The Value of Gain shown in Contours. The Value Indicated
on Each Curve is the Gain Compared to the Maximum Gain of
a Constant Wiggler (0.27).
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k5
ve-—t (26)

2y D

For two electrons with energy difference Ay, the difference in the phase

change is

w
o

Ay = Ay 27

<
W

For the dispersion magnets, the electron flight time is highly energy-
dependent. For the dispersive magnetic field geometry shown in Figure

(5b), the induced phase difference for Ay is found to be

by = _S_gLD 3_3_2. Ay (28)
L8y mc

Comparing (28) with (27), we conclude that an optical klystron with a
dispersion magnet is equivalent tc a two-component device with an

effective drift distance

L3

p [e8 \ (29)
b8 (%)

mc

The effective drift distance is proportional to the magnetic field

squared and to the cubic of the physical distance between two sections,

L .
pD
calculating the gain for a two component device with an effective drift

Since these two devices are equivalent, both can be described by

distance LD. In order to calculate the small-signal gain we first have

to evaluate the integral @ in the spontaneous spectrum.

Since lle is a double integral of real functions
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L L
|Q|2 "—lf S dz, S dzzaw(zl)aw(zz) cos [f(z‘) - f(zz)] (30)
ky® Jo |

The integration can be divided into three regions: i) 0 5_(21, 22) < L1;
ii) Ly + Ly 2 (zp, zz) <L, 112 0 <23 2L, L1 tLly<z, < Lor 0 2252
L1, L7 + LD :;1§_L. The integral in the first region represents the
spontaneous spectrum from the first wiggler while the integral in (i1)
represents the radiation from the secnd wiggler. The integral in region
(i1i) represents the interference of the radiation fields radiated from

different wigglers. Therefore,

1 2
2 2 2 1
a2 = g2 1e? « 5 § e (e, a a0y
(31)

k
S
cos f1(L1) f1(z1) + f2(22) 2y2 LD}

* From (31), we observe that the spontaneous spectrum, in general, is not

the same when we exchange the position of two wigglers unless the whole

device is symmetric, i.e., L1 = L2 and

awl(Ll -2z2) = awz(z) (32)

9,(L,- z) = g,(2)

where g(z) is the Local detuning parameter defined in (4). The small-
signal gain, which is the derivative of IQIZ, is thus not the same for both
cases.

In what follows, we will analyze two two-component wiggler devices:
constant-constant wiggler (CCW) and constant-tapered wiggler (CTW). (CW

is the usual case considered in optical klystrons while CTW is suggested
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for the enhancement of the small signal gain of TWFEL. For the case of

CCW with the same constant parameters a, and k_, |Q| s calculated to be

, A | ] hi hL,
|Q|° = ;f 1 - 5 cos hty - 5 cos hl, + 2 sinm sin—=

1 . ksLp
cos 7 hLl + an - —;3— (33)

The small-signal gain is obtained by taking the derivative cf (33) with
respect to y. In the case of an optical klystron with dispersion magnets,

L, is much larger than L1 or L2 and we have

. |
!
1) zaiksLD hL, o bl | kL
=L - —— g H i — - S (Z4)
3y 2.3 Sihrosirg singy [h(Ll Y 2 ]

The values of hL1 and hL2 are of the order of unity. The guantity

(ksLD/ZYZ) can be varied within a range of 27 by just changing LD within a

such that the third

magnetic period. Therefore, we can always adjust LD
sine function becomes 1. The function (sin hL1/2 and sinhL2/2) is maximum
when L1 = L2 = Lo. Therefore, for the same total interaction length, we
get the best efficiency when the two sections are identical. The maximum

gain for an optical klystron with dispersion magnets is obtained at h = Q.

D (35

Comparing this gain to the maximum gain of a constant wiggler of length
2L, we find
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(35)

Gc,max

which shows the factor of gain enhancement by an optical klystron. The
result is in agreement with previous derivétions.2 From (35), we find
that the maximum gain is proportional to the interaction length squared
Lg, and the effective drift distance, L
can be found from (34)

D" The width of the gain spectrum

2

(7]

or - = (36)

S
s LD
When LD is large, the value in (37} is very small and highly restricts the
electron energy spread to avoid a decrease in gain. For example, for AS =

10 um, L, =10 m and y = 50; the electron energy spread is required to be

D
less than 0.25 percent.

It has to be reminded that the introduction of LD has two purposes.

It transforms the energy modulation of the beam from the first wiggler into
space modulation and places the modulated beam at the best phase position
for the energy extraction in the second wiggler. The space modulation
process needs a length comparable to or longer than the interaction Llength
and is responsible for the high maximum gain in (35). The phase adjustment
requires a much shorter distance, of the order of the magnetic period. It
appears in the argument of the last sine function in (34). These two
characteristic distances are so different in their orders of magnitude that

they can be taken as independent parameters.

Next, we consider a two-component device where one of the wigglers is
linearly tapered. The constant section can be put in front of the tapered
section (constant-tapered wiggler, CTW) or after the tapered section

(tapered-constant wiggler, TCW). Both schemes can be used to enhance the
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i small-signal gain over that of a tapered wiggler of the same total length.
; CTW is also especially useful at large signals because the constant section
provides a bunched electron beam for the tapered section. By substituting
the function f(2) for both sections into (31), we can calculate the inter-

ference term in |Q|2

(38)
a a h L .
al? .6 = ghw—:zﬁ‘ sin — {cosM [c(p) - C(q)] +sinM[S(p) - s(q)lf 4

where a,p and q are given in (20) in terms of the parameters of the tapered

section. The subscript ¢ and t indicate the quantity for constant and

tapered section respectively, and

t
2
h k L h L {
t s D c
s + 7 - 3 for CTW
2y
M=
(ou.t + ht)z kly, hlt (39
Ta - 5 + 7 for TCW
2Y

where hc and ht are the degree of detuning for the CW and TW respective.y.

Therefore, both schemes produce similar spectrum except for the argument M.

If LD is much Larger than Lc or Lt (which is the case if a dispersion
magnet is used) the gain can be obtained easily by taking the derivatives
of sin M and cos M in Equation 38 and discarding all terms except those

proportional to L In that case:

b

h.L
G=+ J— —uc—i-‘-'-—[’ sin T"‘ sinM [C(p) - Clq)] - cosM [S(p)-S(q))

(ko)
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where positive and negative signs are for CTW and TCW respectively. The

gain becomes maximum at hc =0. If ht is also chosen to be zero and aL2

is a large number, we have C(p) = S(p) = 1/2 and C(q) = S{(g) = 0. The
functions sin M and cos M are fast oscillating as LD varies. The value in
the curled bracket in (40) can be maximized by adjusting the drift distance

within a magnetic period. The maximum gain for both schemes becomes

2
G = fpawcathcLDkw ™
d (41)
2C2Y3 20,

Note that the length of the taper enters in the gain 'experession through
. From (25), we find that the maximum small signal gain for a tapered
wiggler of length (Lc + Lt) is:

2 2
) (V2 - l)mpawkw

6 u (42)
max 2.3 3
2¢y act

To simplify the comparison between (41) and (42), we assume that
a,.= awt(O) = a“(O) and awt(Lt) = au(Lc + Lt

. 2 .
= + . -
have the same percentage change in aw or a, Lt act(Lc Lt) The gain

enhancement factor is then obtained by taking the ratio of (41) and (42)

2
6 kLLpays ’ L, s
T " ) 2 L + L
G, (2 -/2) u (Lc + Lt) c t

ax

), i.e. both tapered wigglers

where § is the percentage change in aw for both tapered wigglers. For

example, if we have Lc = Lt and aw = 1, the enhancement factor becomes

L
- (44
S 2.58 L2 )
G xw
max
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Thus, the enhancement could be orders of magnitude large.

In order to simplify the analytical expression, we have calculated
the small-signal gain enhancement of a tapered wiggler by using dispersion
magnets, with LD >> Lc’ Lt' However, if an enhancement of gain by about
ten times is sufficient for our purpose, we find that a two-component
device without drift space is good enough. For example, if the small-
signal gain of a 3-meter long tapered wiggler is to be enhanced, it can be
broken into a 1-meter constant section and a 2-meter tapered section with
the same percentage change 1in aw. We keep a small gap between the two
sections. The gap, which is about the distance of a magnetic period, works
as a phase adjustor such that the modulated electron beam that comes out of
the constant section can be placed at the optimum phase for the energy
extraction in the tapered section at large signals. The details of this

configuration are explained in the next section (IV). {

III-5. MAXIMUM GAIN

The gain expression has been obtained in a double integration of real

functions
(45)
wzw L L
. W . .
G o= ;23-3- S dz| S dzzaw(zl)aw(zz)(z] - zz) sin [f(z]) f(zz)]
v'c o o

where tor the purpose of this discussion we have neglected the term (2/y)
compared to (3/3y). From (45), an upper bound for the small-signal gain
can be set easily because the absolute value of a sine function cannot be

larger than one.

2 L L

-(‘-)E(:,w— S d S d az |z 2z |

G < G,. - z z -
- "limit hY3c3 b 1 X 2%w,max '“1 2 “6)

2 2 3

W W a

- P W W, max
bv3c3 3




where a is the maximum value of a (2). Comparing (46) to (18), it is
w,max W

found that the upper Llimit for the small-signal gain can exceed the

maximum gain for a constant wiggler only by less than 25 percent if no
dispersion magnets are used. An interesting question is: within this
small margin is there any other wiggler variation which can give a higher
gain than the maximum gain of a constant wiggler with the same total
Length?

This question can be answered by using an approach similar to the
calculus of variation. For simplicity, we consider that a small perturbing
variation is introducted to the phase factor but not to the radiation

strength of the constant wiggler

f(z) = hz + én(2) ; aw is constant 47)

where 6§ is a very small constant and n(z) is an arbitrary function. After
substituting (47) into (42), the gain can be expanded in power series of
§. If there is no other variation which can give a higher gain than the
maximum gain of the constant wiggler, the following condition must be

satisfied for any function n(2)

=0 (48)
hL = 2.6, § =0

[-%]
O

L L
J = SodzI S dz,(z; - z,) [n(z}) - n(z,)] cos [h(z' - zz)]

L L
= ZS dzln(z]) Sodzz(z] - zz) cos [h (zI - zz)]

o 49)

Since n(z) is arbitrary, it can be chosen to be a set of orthogonal func-
tions in the interval [0, L] (For example, n(z) can be the Legendre

functions if the integration range is properly transformed into [-1, 1]).
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fFrom the completeness of orthogonal functions, the following integral has

to vanish for any value of 2

L

SL d22(21 - 22) cos [h (z1 - 22)] =0 (50)

It is straight forward to check that (50) can not be satisfied. Therefore,
the conclusion is that the constant wiggler gain is not the maximum gain
that can be obtained. By properly recontouring the wiggler variation, we
expect that the gain can be increased although the proof does not show a
best way to change the tapering. It is interesting to point out that the
linear taper given in (19) does satisfy the condition (48). However, if
the perturbing function n(z) is chosen to be cubic, the condition (45) is
not satisfied and we obtain a gain higher than (18). The increase in the
gain is obviously due to the generation of complex structures in the spon-
taneous spectrum. The change in its slope cannot be very big and thus the

increase in gain is very limited.

The analysis can be generalized to the perturbation on any given
wiggler variation. For example, consider a wiggler with the variation
f(z). Following a similar procedure, we can prove that the gain for that

wiggler is a maximum only when

L
So dzz(z] - 22) cos [f(z]) - f(zz)] =0 st

for any value of z2,. Again, it is straight forward to show that (48)
cannot be satisfied for any variation f(z). Therefore, a generalized
conclusion is that there is no wiggler variation which can be claimed to
give a maximum gain. The gain can always be increased, within the 25 per-
cent margin over the maximum constant-wiggler gain, by properly changing

the tapering.
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III-6. SUMMARY

We have completed a small-signal theory for an arbitrary FEL wiggler.
The spontaneous spectrum and the small-signal gain are derived analyti-
cally. Madey's theorem is then proved in a most general situation. The
gain experession is applied to special cases such as: constant wiggler,
| linear tapered wiggler, two-component devices and optical klystron. An
upper Llimit is found for the small-signal gain of any wiggler configura-
tion which can exceed the maximum gain of a constant-wiggler of the same
length by Less than 25 percent. The significance of its implication is
discussed. For an optical klystron with dispersion magnets, it is found
that the upper Limit is determined from the equivalent device length
which is much higher than the value determined from its physical length.
The gain is thus possible to be highly enhanced with dispersion magnets

in the drift space.
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IV. GAIN AND EFFICIENCY ENHANCEMENT BY A MULTICOMPONENT
WIGGLER FREE ELECTRON LASER

IV-1. INTRODUCTION

Recently, there has been a large research effort towards the
development of the FEL as a high average power source of high frequency
electromagnetic rad1‘at‘ion.1-5 It has been demonstrated theoretically that
the inherently low efficiency of a FEL at high input power and small output
wavelengths (ASS 10'6u)' can be increased by appropriately tapering the

wiggler field.3,4 1In this form, an efficient FEL amplifier could be
obtained. A number of experiments are in progress to validate this

5,6

theory.

The efficiency of a FEL with a tapered wiggler, however, is enhanced
only at a given input power for which the taper is optimum; it can decrease
or even be 'negative' at other input pouers.7 Further, the output radiation
frequency at which the gain is maximum as well as the gain spectrum width
changes as a function of input power for a given taper.8 Thus, a tapered
wiggler free electron laser (TWFEL) becomes less attractive as an
oscillator.

The unusual behavior of the TWFEL gain and gain spectrum as a function
of increasing power in the cavity results in difficult or impossible start
up from noise or with small input powers, low gain and efficiency at the
oscillator saturation power, and a delay, due to the possibility of mode
jumping, in reaching steady state. 1In this section we discuss how these

unwanted oscillator characteristics might be eliminated by substituting the
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tapered wiggler by a more complex multi-component wiggler configuration.

The multi-component wiggler (MCW) configuration is based on the physical
principles of both the TWFEL and the constant (untapered) wiggler free

anbioaittte

electron lLaser (CWFEL). Thus, in order to understand the mechanism of the
MCWFEL we first summarize briefly the characteristics of both the TW and
the CWFEL.

In a TWFEL, the electrons are trapped in the ponderomotive potential
well ("bucket') associated with the beating wave formed by the wiggler and
the radiation field. A ''resonant' or synchronous particle can be defined
that has the same longitudinal velocity Vz as the phase velocity Vph of the
ponderomotive wave ¢y and with an initial phase relative to the beating wave
such that energy is extracted from the particle. By keeping the rate of
change of the phase velocity of the ponderomotive wave equal to that of the
initially resonant electron longitudinal velocity, the phase of the electron
relative to the ponderomotive wave remains constant and the extraction
process can be continued all the way down the wiggler. If the process is
sufficiently slow, (adiabatic) and the initial mean energy of the electron
beam coincides with the resonant energy, the electrons that were initially
trapped in the bucket, tend to remain trapped.3 Hence, as the bucket
energy decreases, the mean energy of the trapped electrons is reduced. Ffor

an electron beam with an effective energy spread smaller than the bucket

height, more than 40 percent of the electrons can be trapped in the poten-
tial well. The maximum increase in energy of the untrapped electrons is of
the order of the bucket height. Thus, by reducing the trapped electrons
mean energy by a larger value than the bucket height, the total mean energy
of the electron beam can be reduced. The extracted electron beam energy
provides the amplification of the input lLaser signal. The rate of change
of the difference Vz - Vph can be adjusted in a controlled manner by adia-

batically tapering the wiggler field amplitude and/or period.

In a CWFEL, the wiggler field amplitude and period are maintained

constant. Thus, an initially resonant electron can be maintained at

resonance throughout the constant wiggler only if its energy remains
constant (zero energy extraction). Depending on their initial phase the
electrons that are initially resonant can either extract energy from or

give energy to the electromagnetic wave. In order to extract energy from
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the electron beam in a CWFEL the initial mean energy must be larger than
the resonant energy and the effective energy spread smaller than half the
bucket he'ight.9 In this case, as the electron beam travels through the
interaction region, the etectrons "bunch'" in phase space at the right phase
for radiation amplification. Once the electron beam mean energy is reduced
to the resonant energy, a large fraction of electrons starts to gain energy
from the wave and the amplification process stops. A CWFEL can be thought

as a special case of the TWFEL for which the wiggler taper is zero.

From the previous description it can be concluded that different
tapers might require different initial electron mean energies for optimum
operation. Further, for a fixed taper, there is an optimum initial differ-
ence between the longitudinal mean velocity of the electron beam, Vb' in
the direction of propagation and the ponderomotive potential well phase
velocity, Vph’ for radiation amplification at a given wavelength. For
example, for a CWFEL of a given interaction length L, the optimum electron
initial energy is such that a) is sufficiently close to the energy of the
potential well that the electrons orbit is perturbed by the presence of the
ponderomotive potential but b) sufficiently far that the electron energy is
reduced to the resonant energy and the maximum energy extracted from the
electron beam at a distance 2z = L from the origin. For a TWFEL, the maxi-
mum trapping occurs when the taper is such that the electron beam energy
rate of change remains the same as the ponderomotive potential energy rate
of change. 1In this case, the optimum initial electron beam energy is the
resonant energy. However if the bucket energy rate of change is, say,
faster than that of the electron beam, Larger trapping might occur by start-
ing the electron beam at an energy below resonant. In both cases, (CWFEL and
and TWFEL), the optimum depends on the amplitude of the ponderomotive poten-
tial well that in turn depends on the radiation power in the interaction
region. As this power varies, the required initial electron beam energy
for maximum gain operation also varies. Since it is very difficult if not
impossible to vary the initial electron beam energy as the power in the
cavity builds up, what in fact occurs is a variation in the gain spectrum
and the frequency that corresponds to maximum gain. Thus, the output fre-
quency will vary and it might become very difficult to reach steady state

in a high power FEL oscillator.
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IV-2. PARAMETRIC DEPENDENCE OF GAIN SPECTRUM WITH INPUT POWER AND TAPER

In order to be able to design an appropriate high power FEL it is then
important to investigate and find ways to modify the parametric dependence
of the gain spectrum on the wiggler taper and radiation power as well as
the input electron beam energy. This dependence can he investigated through
the equations of motion for the electrons coupled to Maxwell's equations for
the fielgs.(3-4-%

cal mechanisms that determine the optimum electron beam initial energy for

In this subsection we discuss in more detail the physi-

a given taper. The interaction of an electron with the radiation inside the
wiggler can be described in a simplified manner by the one dimensional

equations of motion averaged over the fast oscillations of the electron

3,4

motion as follows,

2
dJ— = a i m
z ks a, a, siny
d ks
H% = kw - ——§[u - a  a cos v] 2
2y
where u = 1 4 35/2 for a sinusoidal wiggler field, y = ]'(kw + ks)dz - wst

is the phase position of the electron in the ponderomotive potential well
and dy/dz is proportional to the difference between the longitudinal
particle velocity v, = dz/dt and the phase velocity of the ponderomotive

potential Vph = ws/(kN + ks).

In Equations (1) and (2), ag and a, are defined respectively as,

a_ = , a = &))
mczks mc2

where Es ~ PZ/Z is the radiation field amplitude, PS is the radiation power,
Au is the vector potential associated with the wiggler field Bw and kw and

ks = ms/c are the wiggler and radiaton wavector respectively. Equations




734 J4971661M jusuodwo) oMy B 4Oy (Q) SOLISLJIIdeJEY)
uteg jeublg abueq pue (e) Jusdwadlueyuz urey jeubLs - jjewS Jo dijewayss | 3JnbL4

——— Q3dadvlL ——

* INVISNOD —>

e ————— T T e e e — e
— — e — ——
— —— e ————

v

1Snrav
/ 3ISVHd
R 1
.. .u
p— — — — - —- o,
,\/ NOIS
_ N 1, _ag [ 22497

/I\
.. _@ PO S 1y [ TS

(a

61




(1) and (2) can be combined to study the electrons orbit in phase space:
Yo 8y =YY, = (dw/dz)[yf / u (kH + ks)] where Y, is the energy associated

with the ponderomotive potential well or resonant energy; to yield:

2 2
QE% . K, daw ) 2aS a, K, Gin v o
dz 2u dz y

Equation (4) has been derived assuming no spatial dependence of the wiggler
wavelength (dkw/dz = 0) and sufficiently small gain that the spatial varia-
tion of the radiation wavelength and amplitude can be neglected relative to
the variation in the wiggler amplitude. In addition, terms of the order of
dy/yr and dy/(dz kw) have been taken to be much smaller than 1 and neglected
to first order. The simple orbit equation (4) can be utilized to describe
the dominant mechanisms that determine the parametric behavior of a typical

. 1
TWFEL, a more general expression can be found elsewhere. !

The previous qualitative description of the CWFEL and TWFEL behavior
can be more clearly understood in the Llight of Equations (1) through (4).
The first term in Equation (4) is due to the presence of a wiggler taper:
A = [aw(z) - aw(o)]/aw(o), a similar term occurs for the case in which the
wiggler wavelength is tapered. For a zero taper FEL, A = o, Equation (4)
yields the well known pendulum equation that describes the behavior of the

electrons in a CWFEL.9’10

The trajectories of the electrons in this case
are periodic and correspond to either open orbits (untrapped) or closed
ones (trapped). The motion is symmetric and centered about ¢ = v = 0.

The first section (lefthand) of Figure 1, marked 'constant' in the bottom
diagram, shows a schematic of the separation between open and closed orbits
for a small signal (a) and for a large signal (b) case. The maximum height
of the separatrix, that corresponds to the maximum &y, for which a particle
mey be trapped, is proportional to (a aw)1/2 = (PS1/4 a\d"/2 / ks1/2). The
frequency of oscillation @ of the particles in the well is also propor-

tional to GYH. The maximum width of the trapped orbit is 2m.

From the orbit equations (1) through (&) it is clear that electrons
injected at the resonant energy (Yinj = YRe in Figure 1) and uniformly dis-
tributed in phase space will have their energy oscillate about the resonant

value, if A = 0. No net deceleration will occur in this case as as many
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electrons will gain and lose energy and the behavior of the electrons will

be symmetric about YR (dy/dz = 0). In order to obtain maximum net deceler-
ation of the electrons when A = o, the electron beam must be injected above
the resonant energy. Equation (1) shows that electrons uniformly distrib-
uted in phase space, will increase and decrease in energy in a sinusoidal
manner about the initial Yinj' Because Yinj
near n/2 will be closer to YR and therefore increase slower in phase than

> Yge the electrons with phase

those with other phases (Equation (2)). Hence, a bunching in phase near

n/2 where the deceleration is maximum will occur. In order to extract the
maximum energy, the electrons must be injected at an optimum injection energy
such that after bunching they only complete a fraction (approximately 1/2)

of the periodic oscillation during the length of the interaction. Because

the time it takes to execute this fraction of an oscillation (t = Q—1) is
proportional to P;1/4, the optimum injection energy required for a fixed

length CW will increase with increasing radiation power. I

Equation (2) shows that there is a direct correspondence between the
electron resonance energy such that dy/dz = o and the output frequency.
For a practical CWFEL device the electron beam injection energy remains
fixed and therefore the output frequency will shift in such a.way to
"reaccommodate' the resonant energy until the difference Yinj
optimum value for maximum gain. In addition, since the single pass effi-

- YR has the

ciency n of a CWFEL is determined by the amplitude of the YiRj T YR dif-
ference which for operation at maximum gain will increase as P 1/4, the
actual gain of the system [APS/PS(o)) = n/PS(o)] will decrease as PS3/4.
Thus, although the output freguency will shift as a function of power, the
maximum gain for the initial small signal mode will be higher than for the
other possible modes at higher power, and the initial mode might dominate
as the power in the cavity builds up. The disadvantage of course is that
the gain is too small at the lLarge power of interest and the CWFEL has to

be operated at moderated to low powers.

for a very small input power and a finite taper (A # 0), the first
term in Equation (4) will dominate. This case corresponds to a small
signal TWFEL and if we assume a linear wiggler taper the orbits correspond
to paraboles, ¢y ~ (dw/dz)z. The effect of the second term in Equation (&)

is to introduce some periodicity in the motion in such a way that parabolic




tines will be distorted as shown in the second section of Figure 1, marked
"tapered" in the bottom diagram for a frame moving with Y Further if the
second term is suffuciently large, closed regions (buckets) will exist where
the particle orbits are trapped (Figure 1b). These buckets are now asym-
metric and centered at a phase ¢ = wR that remains constant (dwR/dz = 0).
The value of WR and size of the bucket depends on the relation between the

taper and radiation power as shown by Equation (4).

In a TWFEL, the system is prepared in such a way that the‘taper is

"optimum" for a given radiation power of sufficiently large value. That is,

the wiggler taper is made proportional to the change in YR in such a way

that there is a phase wR for which dwR/dz = o all through the interaction

length. In addition, for maximum efficiency wR has to be such that not

only the deceleration is large but the "bucket size" is sufficiently large

to trap the maximum number of electrons. Equation (1) shows that the !
deceleration is maximum for maximum sin wR' On the other hand, Equa-

tion (4) shows that the largest bucket area occurs when Vg = 0. The opti-

mum therefore occurs for close to 400.12

¥
R
YR depends on Ps1/2’ it is clear that for a given taper there will be only

Since the rate of change of

one radiation power that jis optimum.

If the radiation power is larger than this optimum, the wR that
corresponds to a rate of change in the energy such that dwR/dz = 0, will be
smaller than the optimum. In this case, a slight increase can occur in the
number of trapped electrons (a maximum increase by a factor of 2 can occur
only if wR = 0 that corresponds to Ps + =) and the deceleration efficiency
remains the same to match the fixed taper. Thus, for a sufficiently large

increase in power from the optimum, the overall gain will decrease although

the overall efficiency will remain approximately the same. For the case
where the radiation power is smaller then the optimum, the corresponding wR
will be Larger than the cptimum, up to a value of 90°, that corresponds to a
decrease in the radiation power from the optimum by a factor of less than

5. For smaller radiation powers, no wR can be defined, and the purely open
orbits begin to resemble the open paraboles of the small signal case.
Therefore, if Ps is much smaller than the optimum one (Psop) for a given
taper, most of the particles remain untrapped. In order to uncerstand how

the energy extraction can occur, a frame moving with Yr that corresponds to
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optimum power can be defined. In the second section of Figure la, the

motion of the particles in this frame is shown at z = 0 and at z = 2,
assuming that initially y = Ya and PS < Psop/10. In this figure the

motion of Yg in the laboratory frame is also shown. The particles move
clockwise and increase in energy relative to Yo+ Due to the change of
slope of the orbits, the particles move faster when moving away from YR
than towards Yg* Further, they move slower the closer their energy is to
YRe Energy extraction can occur if the average increase in energy relative
to Yg occurs at a slower rate than the decrease in YR due to the wiggler
taper. This requires that Yinj be quite close to Yg 2S well as a sufficiently
small interaction length so that most of the particles remain in the vicin-
ity of AL and do not reach the fast energy increasing region of the orbits.

Further, for a given interaction length, there will be an optimum initial

Y. . for maximum gain, Figure 1a shows that ngF < y, for P_< P . For
inj opt inj R S sop t
PS = Psop’ the Yin 18 equal to YR to insure maximum electron trapping. In
addition, the maximum gain for Ps < Psop’ will always be smatter than the
maximum gain for P_ = P . Hence, if the initial y. . is chosen to maxi-
s sop inj
mize the gain for P_ =P , the initial (P_<< P ) output freguency of
s sop s sop

the oscillator will be quite different from that growing at saturation, where
Psat < Psop' The problem is exacerbated for very small output wavelengths
were even the maximum small signal can be below threshold for a practical
cavity loss. From the above discussion we conctude that for any taper A i
there is an optimum power for maximum gain operation and this power
increases with Az. Thus, the CWFEL can again be considered as a special
case of a TWFEL with zero taper and optimum operation power in the small

signal regions. In addition, for any A the gain spectrum shifts and changes

its width as a function of increasing power with larger shifts and widths
occurring for larger tapers where the small signal gain is made smaller

than the high (optimum) signal gain.

IV-3. MULTICOMPONENT WIGGLER SCHEME

An ideal FEL oscillator will saturate at high powers with sufficient
gain and efficiency to be of practical interest., At the same time, it will
have a high small signal gain, a monotonically decreasing gain curve (gain

vs. cavity power) and the peak of the gain spectrum will remain at the same

frequency. In this way only a minimum number of photon passes in the inter-
[
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action region will be required to obtain saturation and the system can be
started up from noise or very low powers. A MCWFEL operates as an ideal
FEL by utilizing the properties of a TWFEL with different tapers to its

advantage.

The basic idea is to find a system that uses a number of wiggler
components in such a way that each component operates at its own optimum
power and either is transparent at other powers or enhances the performance
of the corresponding component. In addition, the "optimum' output frequency
of all the components should be the same. This system can be found due to
the fact that, as discussed before, some of the most important physics
mechanisms determining the FEL characteristics depend on the initial elec~
tron beam parameters (Yinj/YR) and the amount of taper that determines the
phase y at which bunching occurs. The resonant energy, Yps is in turn
determined by xw and Bw for a fixed ks. Thus, we can think of a system
formed by various wiggler components with different Aw and Bw to provide
different YR for each component and separated by proper amounts of drift
space in such a way that the electron beam enters bunched at the right

phase in each section.

The simplest MCW combination is then a two component one consisting of
a constant wiggler (CW) followed or following a tapered wiggler (TW) as
illustrated in Figure 1. In order to obtain Yinj> Y;N but Yin = Y;w, A
and Bu should be chosen in such a way that ygw<.y;w. If the constant

w

wiggler is located before the tapered wiggler, and is of the optimum length
for maximum small signal gain, that means that the electrons are bunched at
the end of the wiggler. For a CW, the bunching occurs at a phase near n/2.
The TW operates with the electrons bunched at a phase y = wr =40°, Thus,
in order to introduce the electrons in the TW in a proper fashion a very
small drift space is required. In this drift space, the electrons should

move a distance d given by:
- o _ +n° T
d = [{(90 40°) x180} +n]xs (s)

where n is an integer number. By using a sufficiently large n, d can be of

the order of a centimeter that is experimentally possible. On the other
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hand, if the CW is located after the TW, due to the very low small signal
gains of the TW, no large bunching occurs in the electrons before entering
the CW at low input powers. However, the possibility exists that if the
gain is negative or even positive but very small, the energy spread of the
electrons could be increased by a small amount, decreasing the overall
smaltl signal gain of the CW. None of these two wiggler arrangements
increases the high signal gain, however, they do not reduce it either since

the CW is practically transparent for high powers.

If in addition we wish to enhance the large signal gain, the system
should be operated in a fashion similar to an optical klystron. In the
optical klystron a wiggler is made of two elements or components of say,
length L1 separated by a length L. The first element acts as a 'prebuncher’
and the second element as a ''radiator’. A system thus composed if the
lengths are appropriately chosen will have larger high signal gain than one

composed of a single element of length 2L The reason for this behavior

is that in a single element wiggler, the ;Lectrons are modulated in the
initial part of the wiggler, and afterwards they spread as they bunch. The
bunching is never as effective as if after an initial velocity modulation
they drift in free space and are introduced into the second element only
after appropriate bunching has occurred. In this manner, the number of
trapped electrons can be increased for TW operation. The drift length
necessary to achieve bunching is calculated as the length that it takes
particles separated in energy by 8y/y and in space by half a radiation

wavelength to come together. This length is:

Ly = A, (0 + 1/2) v27 ¢y /y) 6)

where n is is integer number of wavelengths. &y can be identified with the
electron beam energy modulation in the prebuncher section in order to pre-
dict L. Further, the drift length L can be substituted by a dispersion

magnet of amplitude B which produces an "effective drift distance' propor-

L3(D

tional to (c.f. Section III) and therefore could permit to enhance

the gain with shorter devices.
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IV-4. NUMERICAL RESULTS

In order to obtain quantitative confirmation of these ideas, they were
numerically investigated utilizing the TRW 1-D code (described in Sec-
tion II of this report) that includes diffraction effects of the input

Guassian optical beam and finite electron beam emittance according to the

formulation described in Section II of this report. The numerical results
presented here utiljze the optimum parameter of the present TRW experiment:
As = 10.6u, electron beam energy Ebz 25 MeV, electron beam peak current

I = 40A, electron beam radius x2.25 mm =~ photon beam waist, total interac-
tion length < 4m, energy spread Ay/y = 0.5% and a, = O.:g. Numerical ana-
lysis, however, were made for a shorter wavelength case (AS = 1u) and a
number of different characteristic parameters and the same basic results

were obtained.

Figure 2 shows the gain spectrum obtained for a simple L = 4 m {
tapered wiggler FEL for different input powers. The large taper (A = 35%)
is required to obtain sufficiently high gain (>8%) at 500 MW. The gain is
below 5 percent for small signal powers (P < 1 MW) and extremely wide
(Aw/w > 4%), with the peak gain frequency shifted more than 2 percent from
the '"'resonant’ output frequency. In order to test the MCW idea we first
simulated a 3 m two component wiggler as illustrated in Figure 3. Case 1)
corresponds to a 1 m CW followed by a 2 m TW separated by a 1 cm phase
adjustment section and the order of the components is inverted for case 2).
The parameters are chosen in such a way that ng< y;w and Yinj = optimum
for the whole system.. The exact parameters utilized in the simulation are
indicated in the figure. The taper utilized is A = 20 percent that corre-
sponds to an optimum power of ~ 500 MW for a length of 2 m and 100 MW for
a length of 3 m. The gain curve (gain vs. power) for the simple TWFEL is
shown in Figure 3 with dashed lines. The effect of the 1m CW sectior in
case 1) is to increase the small signal gain over that of a simple 3m TWFEL
by a factor larger than 10, that corresponds to a gain similar to that of a
1m CW. At very high powers (P > 500 MW) the system behaves as a simple 3m
TW of A = 20 percent. The gain at 100 MW is enhanced by a factor of almost
2 and the optimum power now occurs at 50 MW. For case 2), the small signal
gain is also increased by almost a factor 10, however for very high powers
the system behaves as a simple 2m TWFEL. Another unusual behavior in this

case is the presence of a dip in the gain curve at P ~ 100 Mw.
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The different behavior of the gain curve at high powers for cases 1)

and 2) is accounted by the 'bunching' process. In a simple TW, the elec~
trons bunch and are trapped by the potential well during the first half of
an oscillation period, practically no radiation is emitted in this part of
the interaction. Thus, in case 1) the initial CW is acting as the buncher
section of a TW. Because the bunching in the CW is pr 4bly more effective
than in a TW, the whole system is equivalent to a TW of Length > 3m for high
powers. Hence, the optimum power of this device is smaller than that of a
3m TW for the same taper A. For very high powers, the particles orbits show
that the bunching does not play such an important role and the whole system
behaves as a 3m TWFEL. For case 2), the CW is practically transparent to
high powers and all the gain is determined by the 2m TW. The dip in the
curve is due to the fact that this system essentially behaves like two
separate components and the optimum power of the 2m TW is at those high
powers for which the CW gain curve is already very small. Obviously,
several possibilities can be suggested to obtain a monotonically decreasing
gain curve with sufficient gain at high powers. Ffor example, a system simi-
tar to 1) with either a shorter TW section or a very small tapered

(A~ 1% or so) first section that will decrease by a very small amount the
small signal gain but will increase the gain at the dip. Another possi-

bility is to consider the effect of drift sections in the high signal gain.

In order to test the optical klystron idea for a TWFEL, a three compo-
nent wiggler: CW, drift space, TW was simulated as shown in Figure 4. 1In
this figure the results obtained for a short prebuncher CW section
(L. =15 cm) followed by a L

C D
tions are compared with those of simple 3m and 2m TWFEL's (dashed lines). The

= 1m drift section and by a 2m and a 3m sec-

Llengths Lc
the effect of the prebuncher section is to increase the bunching at the

and LD were chosen to maximize the bunching at high power. Thus,

optimum power and increase the number of trapped electrons (and hence the
gain and efficiency), by a factor of almost 2. This enhancement will not

be effective if the electron beam has a Large effective energy spread. In

this case the potential well will be full from the beginning and the par-

ticles bunched in phase space will spread in energy beyond the well.

As a final demonstration of the possibilities of a MCW system for FEL

oscillators, a four component system was simulated as illustrated in
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Figure 5. Essentially, a prebuncher (CW plus drift section) was added to
the case 2, two component system of Figure 3. In addition, the taper was
decreased to 13 percent that corresponds to a shift in the optimum power of
a simple 2m TW from 500 MW to 100 MW. Essentially the same optimum power
than that of a simple 3m TW with A = .20. In this manner the small signal
gain is further enhanced by utilizing now the whole initial 3m as a pre-
buncher for the final 1m CW secton. Note that the small sigral gain is

60 percent compared to 20 percent in Figure 3 and less than 3 percent for
the simple 3m TW. The high signal gain now is also increased over that of
a 3m taper due to the prebuncher, however, this increase is quite small.

In addition, now the whole gain curve has an almost (except for the small
bump at a 100 MW) monotonically decreasing characteristic. Obviously, this
system can be optimized by varying the tapers of the different sections,

but the main principle here is to show that an enhancement in the gain up

to the saturation power is possible to achieve. The case shown in Figure 5

j
has a total single pass efficient n = 3 percent at P = 600 MW which is
assumed the saturation power for ‘a cavity loss of 5 percent.

More important than to show plain gain enhancement at a given output
frequency is to look at the improvement in the gain spectrum curve. Fig-
ure 6 shows the decrease in the spectrum width for small signals, the
increase of the maximum gain peak and the almost negligible shift in the
peak. This is due to the flexibility of choosing different YR‘for the
different sections of the MCW. Again, this result can be further optimized
to obtain an extremely stable output frequency and eliminate the possibility
of frequency chirp that is extremely deleterious for oscillator operation.
The number of photon passes calculated to obtain saturation at 600 MW
assuming an injected power of 1 MW was 90 for the case shown in Figure 5.
Further, the number of steps increases only in 10 by each order of magnitude
that we wish to decrease the injected power if diffraction effects of the
excited wave are neglected.

Iv-4, SUMMARY

In conclusion, we have analyzed the main characteristics that determine
the gain and gain spectrum vs. power curves for different tapers. From
those characteristics we have developed a scheme that permits the operation

of the FEL as an oscillator, at very high powers. The scheme, MCWFEL,
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increases the small signal gain by a factor larger than 10, provides a

smooth gain curve, and decreases and/or eliminates the possibility of

frequency chirp due to nonoptimum electron beam energy injection.
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V. FINITE PULSE AND PARASITIC INSTABILITIES
INVESTIGATIONS (UCLA)

V-1. FINITE ELECTRON BEAM PULSE INVESTIGATIONS

TWFEL oscillators and high gain amplifiers are not well described
by analyses that assume infinitely long, periodic electron beams.

High peak current RF Linacs in general bunch the electron beam in 30-50

psec pulses. Therefore, the amplified radiation is also of the order

of 30-50 psec long. This finiteness of the electron and optical beam

pulse can modify the FEL characteristics predicted assuming infinite
beam pulses. For example: 1)

the longitudinal profiles are in general
Gaussian.

Since the radjation power for a FEL is proportional to the
square of electron beam density, the excited radiation pulse profile

will be similar to a Gaussian but narrower than that corresponding to the

electron. Hence, '"bucket height' at the edge will be smaller than at the

center. If the tapers are optimized for the radiation amplified at the

center, the electrons that see the edge amplitude might be detrapped,

this problem will play an extremely important role for FEL oscillators;

2) the velocity of the optical pulse is larger than that of the electron

beam and "slippage' effects will occur; 3) space charge fields can

develop and become important at the edges of the electron beam pulse.
In this case, the edge electrons will experience a dc self electric
field that will modify their dynamics.

In this section we discuss our preliminary investigation of the

problems related to finite electron/optical beam pulse effects. In

particular, we investigate numerical'ly the case of a 10.6um amplifier of
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the characteristics of the TRW experiment and also a high gain 10.6um

amplifier in preparation to
High gain amplifiers can be
electron beam (for example,

present TRW experiment) or,

the study of these effects on oscillators.
obtained by either using a high density

one with a density 10 times larger than the
low input powers and smalt tapers, (in this

case the extraction efficiency also becomes smaller) or the multicomponent
wiggler FEL (MCWFEL) described in the previous section.

V-1-1 Finite-Length Simulations

We consider a relativistic electron beam with pulse Llength Lb and

Il
energy Y passing through a linear magnetic wiggler with B = Bwsinszy.

If Lb >> Ar (radiation wavelength) and both the amplitude (ex) and phase
(¢) of the radiation vary slowly, the equations governing the spatial and
temporal evolution of the electromagnetic wave can be derived €from Maxwell's

equation and take the following form

2
9z ¢ 3t € 2 N . Y.
2ck o i i
]
2 .
(_a__ L, 13 ) omp Dy 1 Stz t vy &)
3z ¢ 3t 2c2kw No P Yiex(zi)

2 .
where ¢ = kZ is the plasma frequency of the relativistic

The equation of motion for each electron can be written as

- +
mrt ¢ and wp
beam.

2 2
5 q Buex

mzczk c
w

d
Y &3

e cos (wi + kozi).

Equations (1) through (3) have a similar form to those given in Ref. 1.

In order to insure the numerical stability, Equations (1) and (2)
are integrated along the characteristic curve of the electromagnetic wave;

that is Ax = cAt, The efficiency of a FEL decreases as the beam energy : S




increases. In order to enhance the efficiency, the wiggler profile
should be designed in such a way that most electrons remain in resonance

with the wave all the time. The resonance condition is roughly
2
B %)
k

As the electron energy changes according to Equation (3), the wiggler

field has to be varied accordingly so that Equation (4) remains true.

The following parameters characteristic of the 10.64um variable
wiggler experiment at TRW are used in our simulations Xg = 3.5 ¢m,
A, = 1.06 x 107> en, L (electron beam pulse Length) = 0.9 cn, '
Lr (signal pulse lLength) = 39 cm, Lw (wiggler length) = 300 cm,
y = 49.85, w2 = 1.69 x 10°0, &8 /mc = 5.2 x 10'C, and eE_/mc =
3.47 x 1010,pwhere Eo is the si;nal electric field ampli:ude. The
electron beam pulse is divided into 30 grid points. Each grid contains
30 radiation wavelengths. The time step At is taken so that Az = cat = Aw
and the resonant phase wr of the particle for determining the wiggler
profile is taken to be 40°. The simulation results of the spatial

distribution of electron density and radiation amplitude at two different

locations are shown in Figure (1la) (z = SOAH) and Figure (1b)

(z = 100AH). To display the electron distribution function, the electron

pulse is divided into five spatially equal regions and three of them

are shown in Figure (2a) (z = SOAH) and Figure (2b) (z = TOOAH).

Obviously the resonant condition can only be maintained for a given

position in the pulse, in this case we chose the particle located at

the center of the beam pulse. As the radiation amplitude is increased

along the length of the system, the inhomogeneity in the total

electromagnetic field along the beam pulse becomes more enhanced which

causes the ratio between the total trapped to untrapped electrons to :

drop.

The gain and particle energy averaged over the beam pulse versus

distance are shown is Figure (3). Since the gain is moderate (=15%), the
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electron dynamics is dominated by the input laser. The edge effect

will not play an important role in this situation, however, for a high
gain or high electron density FEL, the bucket height at the edge and at
the center can be substantially different from each other. 1In this case, |

the calculation using the periodic condition is not a good representation.

In order to investigate this effect, the beam density is increased
by a factor of 10. The results at z = 100Aw are shown in Figures (4)
and (5). The peak radiation amplitude is increased by approximately 10
times but the averaged gain is enhanced by only a factor of 12 (instead of
100 as it would be predicted with the infinite electron beam code). This
is due to the fact that because of the strong inhomogeneities in this
case, none of the electrons at the edges can remain trapped. This effect
will occur also for the small signal gain part of an oscillator start uwp
and it will be exacerbated by the presence of multimodes except if a
MCWFEL is used (as shown in Section IV) .

V-1-2 Space Charge Effects

The space charge effects from one-dimensional calculations are
exaggerated because the electric field lines are forced to go to either

left or right. In a realistic situation the finite transverse dimension

of the electron beam allows the electric field lines to go also sideways.

To investigate this effect, the electron beam is divided into a collection
of charged disks. The space charge electric field at z on the beam axis

due to all the other charged disks can be expressed as

@
- b
Es c(z,t) = 27 j. p(2', t)dz' 27z -1 sgn(z-z')
- 2 2
|z-2"| b
+:é—

(5)
where b is the beam radius and

sgn(z-z') = -1 if (z-2') < ©

sgn(z-2') =1 if (z-2') > o,
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The spatial distribution of the space charge electric field at the
end of the system is shown in Figure (6). Since the space charge force is
much less than the ponderomotive force produced by the input laser and
the wiggler field, the effects of the space charge on the output power
are negligible. This agrees with an analytical calculation of the effect
of space charge in the increase in energy spread. This calculation shows
that only if the electron beam pulse is allowed to drift between the
source and the interaction region for more than S0 m with I = 100A the

effect can become important.

These effects, however. might play a larger role in an oscillator
where small changés in the spectrum can be enhanced by the large number
of round trips. At this point it should be emphazised that the code
developed to perform pulse simulations is more sophisticated than other
finite pulse codes previously avaiLable1 and can follow the evolution
of multimodes and density variations in a detailed manner. We think that
it will prove very useful to utilize this code to study the start up,

evolution and saturation of MCWFEL.

V=2 KINETIC THEORY OF THE SIDEBAND INSTABILITY IN FREE ELECTRON LASERS

In the oscillator mode of operation of a Free Electron Laser,
electrons trapped in the troughs of the ponderomotive potential wells can
interact coherently to produce the growth of sidebands at frequencies
separated from the signal waves by multiples of the bounce freguency in
the ponderomotive potential well. A kinetic treatment of this sideband
instabilities for low vy Free Electron Lasers is given. It is expected

that the treatement can be generalized to high y Free Electron Lasers.

V.2-1 Introduction

The stability of a large amplitude, monochromatic plasma wave in a
collisionless, one~dimensional plasma has been considered previously by
many authcr52’3’4. Because of the coherent resonant interaction between
wave and electrons trapped in the troughs of the large amplitude wave,

it was found that sidebands can grow exponentially.

The possibility of having these sideband instabilities in a Free
Electron Laser was pointed out by N. Kroll, et al.S and observed in the
computer simulation by A. Lin6 (Section V.3 of this report). A kinetic
treatment of this problem in a Free Electron Laser is given in this

paper, The sideband instability was first investigated for electro-
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static waves; the difference for the case of the Free Electron Laser is

that gquasi-longitudinal ponderomotive potential wells are formed by the
combination of the wiggler magnetic field and the signal wave, and
therefore the small amplitude sideband waves that grow are transverse,
electromagnetic waves rather than electrostatic waves. Thus, instead

of solving a Vlasov equation coupled with Poisson's equation as in the
case of sidebands of electrostatic waves, we solve a Vlasov equation with

the coupling coming from Ampere's equation.

In Section V.2-2, the Mima-Nishikawa truncation scheme4 will be used
to obtain a dispersion relation and in Section IV.2-3, the growth rates will

be obtained.

V.2-2 Basic Equations

The starting equations are a 1-dimensional relativistic equation

coupled with the Ampere's equation:

] ) ) _

(3—2 + z 3t +p 3_6) f (z, p, tJ =0
2 2 5 2

A -Li ) e g Hep 6)
2 2 ..2 2 Y dp

9z ¢ ot mc

K = Kw + Ks + KR in equation (6) is the sum of the vector potentials

for the wiggler field, signal wave and sideband which are assumed to be

R =-28 ae w +c.c 0]

with constant amplitude a.. Among the terms in KZ, Kw . KS gives a bunch-
ing potential term and KH . KR gives coupling to the small amplitude, quasi-

longitudinal test wave whose stability is to be determined.
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The Llinearized Vlasov equation is

1 1 1 o
af of o of of (8
—_— ¢ —_— - — = —
3t vV 3z eE Y eE 3p
where
e° = € o [k + k) z -0 0]
and

E+ _ ea a (kw + ks)
o

2micSy

using Fourier-Laplace transforms of f° , f1 , E in Equation (8) and keeping

ECK) and ECk - 2k ), and £1(k), £ (k - k) and f (k - 2k ) where k_ = k_ +
o] o] 0 [o] S

k , we have
W

1 23 1 3
) f (k ko) + wg 5E QZ 53 3E f (k ko)
_wg
B
_1 + -
= Q (A ECk) + AE (k - ZKO)) )]
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which can be solved in terms of the parabolic cylinder function as done by
Alsthul and Karpman.? Using the solution in Equation (6), we obtain the

desired dispersion relation

_ A 8
1=k, o T etk = 2k -k, w=-3a0 ao
W o} W (o]
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and wn(s) is the normalized parabolic cylinder.

V.2=3 Numerical Results

Having obtained the dispersion relation, we need the zero~th order
distribution function f2 which gives a consistent equilibrium solution in
which there is a large amplitude electromagnetic wave. Instead of follow~
ing the recipe given by Bernstein, Greene and Kruskal,8 we will use a

. . . . . . . 6
distribution function inferred from the computer simulation.

Using
(v-v )2 1/2
o=z N[W- —FP ] s[ V% + X%V hH%-w]
n 2 c A

c

-
where Nn is the number of tapered electrons in the n-th potential trough,
the dispersion relation (10) is -umerically solved to obtain the curve
shown in Figure 7. An unstable region is localized in k-space and occurs
at frequencies w < we (Lower sideband). Figure 8 shows the bounce frequency
wg g/i;ig'dependence of the maximum growth rate. The decrease of the growth
rate as wg decreases can be explained due to the disappearance of the
coherence of the electrons trapped at the bottom of the ponderomotive
potential well as the well becomes shallow.
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A broad spectrum of unstable parasitic waves can arise from the interaction between
the trapped electrons and the radiation generated by a free-electron laser. Imposing a
dc electric field with appropriate strength at the onset of trapping can substantially nar-
row the unstable spectrum and allows considerable eahancement ip the radiation intensity.
The nonlinear mechanisms which limit the enhancement process are observed to be due

to nonlinear frequency shift and detrapping.

PACS numbers: 42.55.-f, 52.25.Ps

The idea' of generating tunable, high-power
coherent radiations by passing a relativistic elec-
tron beam through a rippled magnetic field, due
to the recent advance in the accelerator technolo-
gy, finally becomes?®® a reality. The efficiency
of a free-electron laser is intrinsically limited
because the growth of the ponderomotive force
produced by the interaction of the rippled magnet-
- ic field and the signal wave will eventually trap
the electrons. There are several schemes which
theoretically could substantiaily enhance the ef-
ficiency of a free-electron laser. For instance,
if the strength of the rippled magdetic field is in-
creased just before saturation,* the depth of the
ponderomotive potential well becomes deeper
which allows the electrons to give up more energy
to photons. Another scheme, suggested by sev-
eral groups,™® is a variable wiggler, in which the
strength and/or the period of the magnet is ta-
pered to maintain the electrons in resonance with
photons throughout the length of the device, there-
by increasing energy extraction. Still another
alternative™® is applying a dc electric field with
proper strength at the time of saturation, thereby
clamping the trapped electrons in the decelerating
phase which in turn transforms the dc energy into
high-frequency radiations. Most of the efficiency
enhancement calculations use a single-mdde ap-
proximation which prohibits the parasitic insta-
bility®'° to occur. In this Letter, we will demon-
strate, by using particle simulation (multimodes),
that the enhancement process is ultimately term-
inated by the generation of a parasitic instability
due to the interaction of the trapped electrons and
the enhanced signal wave. This parasitic insta-
bility will play an important role in determining
the maximum output power which can be achieved
from a free-electron laser. It will be shown later
that a considerable amount of improvement in
output power can still be achieved by carefully
choosing the strength and the turn-on time of the

98

dc electric field.

To study the dynamices of this highly nonlinear
process, a 1§-dimensional electromagnetic par-
ticle code with periodic boundary condition is
used. The parameters are the following: 3,=(1
-p)"V2=3, ck,=1.52w,, P,/P,=10"% and w,
=¢B,/m,c=0.53w,, where 8=V,/c, V,and care,
respectively, the beam velocity and speed of light,
k, is the wave number of the rippled field, P, is
the beam momentum spread, and B, is the rippled
field strength. This set of parameters corre-
sponds to a relativistic electron beam and a den-
sity of 10’2 ¢m ™3, an energy of 1.5 MeV, and a cur-
rent of 5 kA/cm? The period and the strength of
the static magnetic field are, respectively, 2.2 cm
and 1.2 kG. The growth rate and the efficiency of
this case are 0.07w, and 8%, respectively. The
trapping of the electrons by the total longitudinal
potential wave causes the saturation to occur at
w,t=>150. This trapping process becomes evi-
dent in Fig. 1(a) (dashed lines) which exhibits
oscillatory behavior in the time evolution of the
signal wave {ck,=15.2w,). The oscillation fre-
quency is at the particle bouncing frequency w,,
which is given by

Wy =k (g 0y /M3 Y %, (0

where ck,=c(k,+k,)=16.Tw, ana ¢, is the total
longitudinal potential. At the onset of trapping,

a broad spectrum of parasitic waves with frequer-
cies lower than that of the signal wave becomes
unstable. The dashed line in Fig. 1(b) (ck,=13.7
Xw,), Fig. 1(c) (ck,=12.2w,), and Fig. 1{(d) (ck,
=10.7w,) shows the time evolution of the three
most unstable parasitic electromagnetic waves,
These waves grow with a very large growth rate
(Iy=0.2w,, I,=0.17w,, I',=0.1w,) which is sub-
stantially larger than the original signal growth
rate. This instability has been investicated by
Kruer, Dawson, and Sudan® for large-amplitude
electrostatic waves in plasmas and by Kroll,

1513




VoruMs 46, Numses 23

PHYSICAL REVIEW LETTERS

8 JUNE 1981

Morton, and Rosenbluth'® for high-9, free-elec-
tron lasers. In this paper the dispersion relation
for the parasitic instability will be derived for
free-electron lasers following the approach of
Ref. 9. |

d*X

The instability process can be viewed as a
Raman scattering of the signal wave off the elec-
trons executing bouncing motion in the pondero-
motive potential well. In the small amplitude ap-
proximation, the equation describing a driven
harmonic oscillator can be used

_d't'!‘ + 0N Xy X o= V)=~ MoChoy '

q'B, f th'A (k' w)explik,'X, ~iw t)

@y &'do’, (2)

where (X, - X,,~ V,¢) is position of the electron relative to the nth trough, »,’=k,+%’, V,=w /(k,+%,)
is the phase velocity of the ponderomotive potential wave which provides the trapping and A, is the
perturbing vector potential, In writing Eq. (2) the space-charge field is neglected. The density per-
turbation produced by the perturbed motion of the oscillators coupled with the transverse motion in-
duced by the rippled magnetic field produced a current perturbation which is the source of the parasit-
ic wave. By using some 6-function identities, one obtains

Ak, ) w‘wi’(knok)ZE (kn+k+mh|).41(k+mk4,w+mw ) (3)

2,17, (@ = w,e(k, w)

where R =w ~(k,+R)V,, k,=k,+k,, and w, is the

- plasma frequency for the trapped electrons, 7,

=(1- 2/&)*1/3' and
€k, w)=(w? = Eh*=w?/7,) (4)

Retaining only the lowest-order cbupling in Eq.
(3), i.e.,, m=0, we obtain the desired dispersion
relation

2 2 2
<m-w,')(w=-c=»z-%:.>=i“;4°,‘3:;._ (5

Substituting the appropriate parameters into Eq.
(5) gives I';=0.12w,, I,=0.1w,, and I, =0.08w,,

"
L) = My

- 4Ok / ¢! oy ¥
._.-_—5";.‘:‘” £ nenv Y
£

20

‘.w.‘ -’U)pt ’

MG. 1. Time mluﬁon of the electromqnettc wave
energies for the cases without imposing a dc electric
fleld (dashed line) and with a dc electric fleld (E,
= EK,,) (2) signal wave, M) ch, = 13.7w,, (¢} cky = 12.24,,
and (@ chy = 10.79, .
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lwhich is smaller than the simulation resuits (T,
=0.22w,). The discrepancy could be due to the
nonlinear frequency shift caused by the difference
between the restoring forces for trapped elec-
trons and for untrapped electrons. The instability
tends to level off after the unstable wave energy
reaches about 10°* times the signal wave energy
and eventually saturates because of particle dif-
fusion and detrapping in the phase space (Fig. 2)
which destroy the resonance between electrons
and parasitic waves.

When a dc electric field with amplitude E,
~k,9,=E,, where ¢, is the saturated total longi-
tudinal potential (E, =300 V/cm) is applied at sat-
uration, 4¢he combined action of dc and rf fields
causes some of the beam electrons to become
runaways while others remain clamped at the de-
celerating phase of the rf fields [Fig. 3(a)]. The
clamped electrons transfer nearly all the dec elec-
tric field energy that went into them to the elec-
tromagnetic radiation. The escaped beam elec-
trons are lost to the interaction. The gain in out-
put power can in principle be extended indefinitely
if the parasitic waves can be prevented from
growing. The simulation results show that the un-
stable parasitic wave spectrum is substantially
narrowed upon imposing a dc electric tield at w,¢
=150 (Fig. 1 solid line), This is due to the dis-
tortion of the potential well and phase shift caused
by the de electric field. In fact only the mode
with ck,=12.2w, remains unstable with a growth
rateof I, =0. Oaw, and the signal wave energy is
increased to six times the saturation energy (£,
without applying the dc electric field. The en-
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(@) '

X\,

(b)

.FIG. 2. Time evolution of the phase space for the
case without imposing a dc electric fleld, (a) w,¢ = 145,
(b) U" = 200 lll‘l (0) -l'" = 300.

hancement process is eventually terminated due
to the detrapping of resonant electrons by the
ponderomotive wave with ck,=c(k,+4%,)=13.7w,,
which is close to the original ponderomotive wave
number o(k,+k,)=16.7w, [Fig. 3(c)]. At the
same time the instability also generates a long-
wavelength ponderomotive wave with wave num-
ber c(k,~k,)=3w, [Fig. 3b)] which dogs not
cause any detrapping.

The results with E = 2E, indicate that the para-
sitic waves are completely suppressed for a
while upon imposing the dc electric field and the
mode with ck,=12.2w, begins to grow at w,!
= 200 but this mode was saturated without causing
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FIG. 3. Time evolution of the phase space for the
case with a dc electric field of E =~ E,; , (&) w,t =210,

®) w,¢t = 300, and (c) w,t = 325.

any significant detrapping. (See Fig. 4.) The sat-
uration is due to the frequency change [Eq. (1)] in-
troduced by the increase of ¢, This frequency
change also renders the mode with ¢k,=10.7w, to
become unstable at w,! =450 and eventually de-
traps the resonant electrons. In this cage the
signal wave energy was enhanced to 25 times
E,_?. However the increase rate in this case
(only 25% of electrons are trapped) is lower thus
requiring a longer system. The overall efficiency
is small since the dc electric field spent a large
amount of its energy to accelerate the runaway
electrons. The efficiency enhancement factor can
be substantially increased if the runaway elec-
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FIG. 4. Time evolution of the electromagnetic wave
energies for the case with E,~ 2E,;, (a) signal wave
and () cky =12.2w, and ck,; = 10.7., .

trons are scraped off the system.

The simulation results indicate that the output
power and the efficiency of a free-electron laser
can be substantially improved by applying an ap-
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propriate strength of a dc electric field at satur-
ation. The enhancement process is ultimately
terminated by the detrapping of resonant electrons
caused by the parasitic instability.
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VIII NEW DISCOVERIES

Although no invention or patent disctosure was applied for, the

multicomponent wiggler scheme described in Section IV is a new discovery

stemming from this research effort.
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